Abstract
Following recent success on the analysis of the Slope estimator, we provide a sharp oracle inequality in term of prediction error for Graph-Slope, a generalization of Slope to signals observed over a graph. In addition to improving upon best results obtained so far for the Total Variation denoiser (also referred to as Graph-Lasso or Generalized Lasso), we propose an efficient algorithm to compute Graph-Slope. The proposed algorithm is obtained by applying the forward-backward method to the dual formulation of the Graph-Slope optimization problem. We also provide experiments showing the practical applicability of the method.
Citation
Pierre C. Bellec. Joseph Salmon. Samuel Vaiter. "A sharp oracle inequality for Graph-Slope." Electron. J. Statist. 11 (2) 4851 - 4870, 2017. https://doi.org/10.1214/17-EJS1364
Information