Electronic Journal of Statistics

Permutation tests for the equality of covariance operators of functional data with applications to evolutionary biology

Alessandra Cabassi, Davide Pigoli, Piercesare Secchi, and Patrick A. Carter

Full-text: Open access

Abstract

In this paper, we generalize the metric-based permutation test for the equality of covariance operators proposed by Pigoli et al. (2014) to the case of multiple samples of functional data. To this end, the non-parametric combination methodology of Pesarin and Salmaso (2010) is used to combine all the pairwise comparisons between samples into a global test. Different combining functions and permutation strategies are reviewed and analyzed in detail. The resulting test allows to make inference on the equality of the covariance operators of multiple groups and, if there is evidence to reject the null hypothesis, to identify the pairs of groups having different covariances. It is shown that, for some combining functions, step-down adjusting procedures are available to control for the multiple testing problem in this setting. The empirical power of this new test is then explored via simulations and compared with those of existing alternative approaches in different scenarios. Finally, the proposed methodology is applied to data from wheel running activity experiments, that used selective breeding to study the evolution of locomotor behavior in mice.

Article information

Source
Electron. J. Statist., Volume 11, Number 2 (2017), 3815-3840.

Dates
Received: January 2017
First available in Project Euclid: 18 October 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1508292527

Digital Object Identifier
doi:10.1214/17-EJS1347

Mathematical Reviews number (MathSciNet)
MR3714299

Zentralblatt MATH identifier
06796556

Subjects
Primary: 62G10: Hypothesis testing 62J15: Paired and multiple comparisons
Secondary: 62P10: Applications to biology and medical sciences

Keywords
Non-Euclidean metrics non-parametric combination post-hoc analysis quantitative genetics

Rights
Creative Commons Attribution 4.0 International License.

Citation

Cabassi, Alessandra; Pigoli, Davide; Secchi, Piercesare; Carter, Patrick A. Permutation tests for the equality of covariance operators of functional data with applications to evolutionary biology. Electron. J. Statist. 11 (2017), no. 2, 3815--3840. doi:10.1214/17-EJS1347. https://projecteuclid.org/euclid.ejs/1508292527


Export citation

References

  • Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions., Biometrics, 62(1):245–253.
  • Birnbaum, A. (1954). Combining independent tests of significance., Journal of the American Statistical Association, 49(267):559–574.
  • Boente, G., Rodriguez, D., and Sued, M. (2014). A test for the equality of covariance operators., arXiv preprint arXiv:1404.7080.
  • Bosq, D. (2012)., Linear processes in function spaces: theory and applications, volume 149. Springer Science & Business Media.
  • Bronikowski, A., Morgan, T., Garland, T., and Carter, P. (2006). The evolution of aging and age-related physical decline in mice selectively bred for high voluntary exercise., Evolution, 60(7):1494–1508.
  • Cabassi, A. and Kashlak, A. B. (2016)., fdcov: Analysis of Covariance Operators. R package version 1.0.0.
  • Careau, V., Wolak, M. E., Carter, P. A., and Garland, T. (2015). Evolution of the additive genetic variance–covariance matrix under continuous directional selection on a complex behavioural phenotype. In, Proc. R. Soc. B, volume 282, page 20151119. The Royal Society.
  • Colosimo, B. M. and Pacella, M. (2010). A comparison study of control charts for statistical monitoring of functional data., International Journal of Production Research, 48(6):1575–1601.
  • Dryden, I. L., Koloydenko, A., and Zhou, D. (2009). Non-euclidean statistics for covariance matrices, with applications to diffusion tensor imaging., The Annals of Applied Statistics, pages 1102–1123.
  • Falconer, D. S. and Mackay, T. F. (1996)., Introduction to quantitative genetics. Longman, Essex United Kingdom.
  • Ferraty, F. and Vieu, P. (2006)., Nonparametric functional data analysis: theory and practice. Springer Science & Business Media.
  • Fremdt, S., Steinebach, J. G., Horvath, L., and Kokoszka, P. (2013). Testing the equality of covariance operators in functional samples., Scandinavian Journal of Statistics, 40(1):138–152.
  • Horváth, L. and Kokoszka, P. (2012)., Inference for functional data with applications, volume 200. Springer Science & Business Media.
  • Illian, J. B., Prosser, J. I., Baker, K. L., and Rangel-Castro, J. I. (2009). Functional principal component data analysis: A new method for analysing microbial community fingerprints., Journal of microbiological methods, 79(1):89–95.
  • Irwin, K. and Carter, P. (2013). Constraints on the evolution of function-valued traits: a study of growth in tribolium castaneum., Journal of evolutionary biology, 26(12):2633–2643.
  • Irwin, K. and Carter, P. (2014). Artificial selection on larval growth curves in tribolium: correlated responses and constraints., Journal of evolutionary biology, 27(10):2069–2079.
  • Ji, X. and Ruymgaart, F. H. (2008). Fréchet-differentiation of functions of operators with application to testing the equality of two covariance operators. In, Journal of Physics: Conference Series, volume 124, page 012028. IOP Publishing.
  • Jiang, C.-R., Aston, J. A., and Wang, J.-L. (2009). Smoothing dynamic positron emission tomography time courses using functional principal components., NeuroImage, 47(1):184–193.
  • Kane, S. L., Garland Jr, T., and Carter, P. A. (2008). Basal metabolic rate of aged mice is affected by random genetic drift but not by selective breeding for high early-age locomotor activity or chronic wheel access., Physiological and Biochemical Zoology, 81(3):288–300.
  • Kashlak, A. B., Aston, J. A., and Nickl, R. (2016). Inference on covariance operators via concentration inequalities: k-sample tests, classification, and clustering via rademacher complexities., arXiv preprint arXiv:1604.06310.
  • Kingsolver, J. G., Gomulkiewicz, R., and Carter, P. A. (2001). Variation, selection and evolution of function-valued traits. In, Microevolution Rate, Pattern, Process, pages 87–104. Springer.
  • Koteja, P., Garland, T., Sax, J. K., Swallow, J. G., and Carter, P. A. (1999). Behaviour of house mice artificially selected for high levels of voluntary wheel running., Animal behaviour, 58(6):1307–1318.
  • Laukaitis, A. (2008). Functional data analysis for cash flow and transactions intensity continuous-time prediction using hilbert-valued autoregressive processes., European Journal of Operational Research, 185(3):1607–1614.
  • Lehmann, E. L. and Romano, J. P. (2006)., Testing statistical hypotheses. Springer Science & Business Media.
  • Marcus, R., Eric, P., and Gabriel, K. R. (1976). On closed testing procedures with special reference to ordered analysis of variance., Biometrika, 63(3):655–660.
  • Morgan, T. J., Garland, T., and Carter, P. A. (2003). Ontogenies in mice selected for high voluntary wheel-running activity. i. mean ontogenies., Evolution, 57(3):646–657.
  • Panaretos, V. M., Kraus, D., and Maddocks, J. H. (2010). Second-order comparison of gaussian random functions and the geometry of dna minicircles., Journal of the American Statistical Association, 105(490):670–682.
  • Paparoditis, E. and Sapatinas, T. (2016). Bootstrap-based testing of equality of mean functions or equality of covariance operators for functional data., Biometrika, 103(3):727–733.
  • Pesarin, F. and Salmaso, L. (2010)., Permutation tests for complex data: theory, applications and software. John Wiley & Sons.
  • Pigoli, D., Aston, J. A., Dryden, I. L., and Secchi, P. (2014). Distances and inference for covariance operators., Biometrika, 101(2):409–422.
  • R Core Team (2016)., R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Ramsay, J. O. and Silverman, B. W. (2005)., Functional Data Analysis. Springer.
  • Ramsay, J. O., Wickham, H., Graves, S., and Hooker, G. (2014)., fda: Functional Data Analysis. R package version 2.4.4.
  • Rubin, D. B. (1976). Inference and missing data., Biometrika, 63(3):581–592.
  • Solari, A., Salmaso, L., Pesarin, F., and Basso, D. (2009)., Permutation Tests for Stochastic Ordering and ANOVA. Springer New York.
  • Stinchcombe, J. R., Kirkpatrick, M., and Function-valued Traits Working Group (2012). Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes., Trends in Ecology & Evolution, 27(11):637–647.
  • Swallow, J. G., Carter, P. A., and Garland Jr, T. (1998). Artificial selection for increased wheel-running behavior in house mice., Behavior genetics, 28(3):227–237.
  • Torres, J. M., Nieto, P. G., Alejano, L., and Reyes, A. (2011). Detection of outliers in gas emissions from urban areas using functional data analysis., Journal of hazardous materials, 186(1):144–149.
  • Tucker, J. D. (2016)., fdasrvf: Elastic Functional Data Analysis. R package version 1.6.1.
  • Tucker, J. D., Wu, W., and Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation., Computational Statistics & Data Analysis, 61:50–66.
  • Viviani, R., Grön, G., and Spitzer, M. (2005). Functional principal component analysis of fmri data., Human brain mapping, 24(2):109–129.
  • West, R. M., Harris, K., Gilthorpe, M. S., Tolman, C., and Will, E. J. (2007). Functional data analysis applied to a randomized controlled clinical trial in hemodialysis patients describes the variability of patient responses in the control of renal anemia., Journal of the American Society of Nephrology, 18(8):2371–2376.
  • Westfall, P. H. and Young, S. S. (1993)., Resampling-based multiple testing: Examples and methods for p-value adjustment, volume 279. John Wiley & Sons.
  • Wu, P.-S. and Müller, H.-G. (2010). Functional embedding for the classification of gene expression profiles., Bioinformatics, 26(4):509–517.