Electronic Journal of Statistics

A discontinuity adjustment for subdistribution function confidence bands applied to right-censored competing risks data

Dennis Dobler

Full-text: Open access

Abstract

The wild bootstrap is the resampling method of choice in survival analytic applications. Theoretic justifications typically rely on the assumption of existing intensity functions which is equivalent to an exclusion of ties among the event times. However, such ties are omnipresent in practical studies. It turns out that the wild bootstrap should only be applied in a modified manner that corrects for altered limit variances and emerging dependencies. This again ensures the asymptotic exactness of inferential procedures. An analogous necessity is the use of the Greenwood-type variance estimator for Nelson-Aalen estimators which is particularly preferred in tied data regimes. All theoretic arguments are transferred to bootstrapping Aalen-Johansen estimators for cumulative incidence functions in competing risks. An extensive simulation study as well as an application to real competing risks data of male intensive care unit patients suffering from pneumonia illustrate the practicability of the proposed technique.

Article information

Source
Electron. J. Statist., Volume 11, Number 2 (2017), 3673-3702.

Dates
Received: February 2017
First available in Project Euclid: 9 October 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1507536027

Digital Object Identifier
doi:10.1214/17-EJS1319

Mathematical Reviews number (MathSciNet)
MR3709866

Zentralblatt MATH identifier
1373.62488

Subjects
Primary: 62N03: Testing 62G09: Resampling methods

Keywords
Aalen-Johansen estimator counting process discontinuous cumulative hazard functions discontinuous cumulative incidence functions Greenwood-type variance estimator Nelson-Aalen estimator survival analysis Tied event times wild bootstrap

Rights
Creative Commons Attribution 4.0 International License.

Citation

Dobler, Dennis. A discontinuity adjustment for subdistribution function confidence bands applied to right-censored competing risks data. Electron. J. Statist. 11 (2017), no. 2, 3673--3702. doi:10.1214/17-EJS1319. https://projecteuclid.org/euclid.ejs/1507536027


Export citation

References

  • [1] M. G. Akritas. Bootstrapping the Kaplan-Meier Estimator., Journal of the American Statistical Association, 81 (396): 1032–1038, 1986.
  • [2] A. Allignol, M. Schumacher, and J. Beyersmann. A note on variance estimation of the Aalen-Johansen estimator of the cumulative incidence function in competing risks, with a view towards left-truncated data., Biom. J., 52 (1): 126–137, 2010.
  • [3] P. K. Andersen, Ø. Borgan, R. D. Gill, and N. Keiding., Statistical Models Based on Counting Processes. Springer, New York, 1993.
  • [4] R. Bajorunaite and J. P. Klein. Two-sample tests of the equality of two cumulative incidence functions., Computational Statistics & Data Analysis, 51: 4269–4281, 2007.
  • [5] J. Beyersmann, M. Pauly, and S. Di Termini. Weak Convergence of the Wild Bootstrap for the Aalen-Johansen Estimator of the Cumulative Incidence Function of a Competing Risk., Scandinavian Journal of Statistics, 40 (3), 2013.
  • [6] T. Bluhmki, D. Dobler, J. Beyersmann, and M. Pauly. The Wild Bootstrap for Multivariate Nelson-Aalen Estimators., arXiv preprint :1602.02071v2, 2016.
  • [7] T. Bluhmki, C. Schmoor, D. Dobler, M. Pauly, J. Finke, M. Schumacher, and J. Beyersmann. A Wild Bootstrap Approach for the Aalen-Johansen Estimator., preprint, 2017.
  • [8] D. R. Cox. Regression Models and Life-Tables., Journal of the Royal Statistical Society, Series B (Methodological), 34 (2): 187–220, 1972.
  • [9] D. R. Cox and D. Oakes., Analysis of Survival Data. Chapman & Hall/CRC, Boca Raton, Florida, USA, 1984.
  • [10] D. Dobler and M. Pauly. Bootstrapping Aalen-Johansen processes for competing risks: Handicaps, solutions, and limitations., Electronic Journal of Statistics, 8 (2): 2779–2803, 2014.
  • [11] D. Dobler and M Pauly. Approximate tests for the equality of two cumulative incidence functions of a competing risk., Statistics, http://dx.doi.org/10.1080/02331888.2017.1336171, 2017.
  • [12] D. Dobler, J. Beyersmann, and M Pauly. Non-strange weird resampling for complex survival data., Biometrika, https://doi.org/10.1093/biomet/asx026, 2017.
  • [13] B. Efron. Censored Data and the Bootstrap., Journal of the American Statistical Association, 76 (374): 312–319, 1981.
  • [14] B. Efron. Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve., Journal of the American Statistical Association, 83 (402): 414–425, 1988.
  • [15] R. D. Gill and S. Johansen. A Survey of Product-Integration with a View Toward Application in Survival Analysis., The Annals of Statistics, 18 (4): 1501–1555, 1990.
  • [16] J. D. Kalbfleisch and R. L. Prentice., The Statistical Analysis of Failure Time Data. John Wiley & Sons, Hoboken, New Jersey, USA, 2nd edition, 2002.
  • [17] E. L. Kaplan and P. Meier. Nonparametric Estimation from Incomplete Observations., Journal of the American statistical association, 53 (282): 457–481, 1958.
  • [18] D. Y. Lin. Non-parametric inference for cumulative incidence functions in competing risks studies., Statistics and Medicine, 16: 901–910, 1997.
  • [19] D. Y. Lin, L. J. Wei, and Z. Ying. Checking the Cox model with cumulative sums of martingale-based residuals., Biometrika, 80 (3): 557–572, 1993.
  • [20] T. Martinussen and T. H. Scheike., Dynamic regression models for survival data. Statistics for Biology and Health. Springer, New York, 2006.
  • [21] D. F. Moore., Applied Survival Analysis Using R. Springer, Switzerland, 2016.
  • [22] R Development Core Team., R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL http://www.R-project.org.
  • [23] G. Tutz and M. Schmid., Modeling Discrete Time-to-Event Data. Springer, Cham, 2016.
  • [24] A. W. van der Vaart and J. A. Wellner., Weak Convergence and Empirical Processes. Springer, New York, 1996.