Electronic Journal of Statistics

Asymptotically minimax prediction in infinite sequence models

Keisuke Yano and Fumiyasu Komaki

Full-text: Open access


We study asymptotically minimax predictive distributions in infinite sequence models. First, we discuss the connection between prediction in an infinite sequence model and prediction in a function model. Second, we construct an asymptotically minimax predictive distribution for the setting in which the parameter space is a known ellipsoid. We show that the Bayesian predictive distribution based on the Gaussian prior distribution is asymptotically minimax in the ellipsoid. Third, we construct an asymptotically minimax predictive distribution for any Sobolev ellipsoid. We show that the Bayesian predictive distribution based on the product of Stein’s priors is asymptotically minimax for any Sobolev ellipsoid. Finally, we present an efficient sampling method from the proposed Bayesian predictive distribution.

Article information

Electron. J. Statist., Volume 11, Number 2 (2017), 3165-3195.

Received: June 2016
First available in Project Euclid: 11 September 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62C20: Minimax procedures 62G20: Asymptotic properties
Secondary: 62C10: Bayesian problems; characterization of Bayes procedures

Adaptivity Kullback–Leibler divergence nonparametric statistics predictive distribution Stein’s prior

Creative Commons Attribution 4.0 International License.


Yano, Keisuke; Komaki, Fumiyasu. Asymptotically minimax prediction in infinite sequence models. Electron. J. Statist. 11 (2017), no. 2, 3165--3195. doi:10.1214/17-EJS1312. https://projecteuclid.org/euclid.ejs/1505116877

Export citation


  • [1] Belitser, E. andGhosal, S. (2003). Adaptive Bayesian inference on the mean of an infinite-dimensional normal distribution., Ann. Statist. 31 536–559.
  • [2] Brown, L. D., George, E. I. andXu, X. (2008). Admissible predictive density estimation., Ann. Statist. 36 1156–1170.
  • [3] Brown, L. D. andZhao, L. H. (2009). Estimators for Gaussian models having a block-wise structure., Statist. Sinica 19 885–903.
  • [4] Cai, T., Low, M. andZhao, L. (2000). Sharp adaptive estimation by a blockwise method Technical Report, Warton School, University of Pennsylvania, Philadelphia.
  • [5] Cavalier, L. andTsybakov, A. B. (2001). Penalized blockwise Stein’s method, monotone oracles and sharp adaptive estimation., Math. Methods Statist. 10 247–282.
  • [6] Dudley, R. M. (2002)., Real analysis and probability. Cambridge University Press, Cambridge.
  • [7] Efromovich, S. andPinsker, M. (1984). Learning algorithm for nonparmetric filtering., Automation and Remote Control 11 1434–1440.
  • [8] George, E. I., Liang, F. andXu, X. (2006). Improved minimax predictive densities under Kullback-Leibler loss., Ann. Statist. 34 78–91.
  • [9] Komaki, F. (2001). A shrinkage predictive distribution for multivariate normal observables., Biometrika 88 859–864.
  • [10] Kubokawa, T. (1991). An approach to improving the James-Stein estimator., J. Multivariate Anal. 36 121–126.
  • [11] Mandelbaum, A. (1984). All admissible linear estimators of the mean of a Gaussian distribution on a Hilbert space., Ann. Statist. 12 1448–1466.
  • [12] Mukherjee, G. andJohnstone, I. M. (2015). Exact minimax estimation of the predictive density in sparse Gaussian models., Ann. Statist. 43 937–961.
  • [13] Philippe, A. (1997). Simulation of right and left truncated gamma distributions by mixtures., Stat. Comput. 7 173–181.
  • [14] Pinsker, M. S. (1980). Optimal filtration of square-integrable signals in Gaussian noise., 16 120–133.
  • [15] Pollard, D. (2002)., A User’s Guide to Measure Theoretic Probability. Cambridge University Press, Cambridge.
  • [16] Tsybakov, A. (2009)., Introduction to Nonparametric Estimation. Springer, New York.
  • [17] Wasserman, L. (2007)., All of Nonparametric Statistics, 3rd ed. Springer, New York.
  • [18] Williams, D. (1991)., Probability with Martingale. Cambridge University Press, Cambridge.
  • [19] Xu, X. andLiang, F. (2010). Asymptotic minimax risk of predictive density estimation for non-parametric regression., Bernoulli 16 543–560.
  • [20] Xu, X. andZhou, D. (2011). Empirical Bayes predictive densities for high-dimensional normal models., J. Multivariate Anal. 102 1417–1428.
  • [21] Zhao, L. H. (2000). Bayesian aspects of some nonparametric problems., Ann. Statist. 28 532–552.