Electronic Journal of Statistics

Poincaré inequalities on intervals – application to sensitivity analysis

Olivier Roustant, Franck Barthe, and Bertrand Iooss

Full-text: Open access


The development of global sensitivity analysis of numerical model outputs has recently raised new issues on 1-dimensional Poincaré inequalities. Typically two kinds of sensitivity indices are linked by a Poincaré type inequality, which provides upper bounds of the most interpretable index by using the other one, cheaper to compute. This allows performing a low-cost screening of unessential variables. The efficiency of this screening then highly depends on the accuracy of the upper bounds in Poincaré inequalities.

The novelty in the questions concern the wide range of probability distributions involved, which are often truncated on intervals. After providing an overview of the existing knowledge and techniques, we add some theory about Poincaré constants on intervals, with improvements for symmetric intervals. Then we exploit the spectral interpretation for computing exact value of Poincaré constants of any admissible distribution on a given interval. We give semi-analytical results for some frequent distributions (truncated exponential, triangular, truncated normal), and present a numerical method in the general case.

Finally, an application is made to a hydrological problem, showing the benefits of the new results in Poincaré inequalities to sensitivity analysis.

Article information

Electron. J. Statist. Volume 11, Number 2 (2017), 3081-3119.

Received: December 2016
First available in Project Euclid: 25 August 2017

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier

Poincaré inequality spectral gap truncated distribution Kummer’s functions Sobol-Hoeffding decomposition Sobol indices derivative-based global sensitivity measures finite elements

Creative Commons Attribution 4.0 International License.


Roustant, Olivier; Barthe, Franck; Iooss, Bertrand. Poincaré inequalities on intervals – application to sensitivity analysis. Electron. J. Statist. 11 (2017), no. 2, 3081--3119. doi:10.1214/17-EJS1310. https://projecteuclid.org/euclid.ejs/1503626422

Export citation


  • [1] Abramowitz, M. and Stegun, I., (1972).Handbook of Mathematical Functions. Dover Publications, Tenth printing.
  • [2] Allaire, G., (2007).Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation.Numerical Mathematics and Scientific Computation. Oxford Science Publications.
  • [3] Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C. and Scheffer, G., (2000).Sur les inégalités de Sobolev logarithmiques.Panoramas et Synthèses10. Société Mathématique de France, Paris.
  • [4] Babuska, I. and Osborn, J., (1991).Eigenvalue ProblemsInHandbook of Numerical AnalysisII641–787. Elsevier Science.
  • [5] Bakry, D., Gentil, I. and Ledoux, M., (2014).Analysis and geometry of Markov diffusion operators, volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham.
  • [6] Barthe, F., Bianchini, C. and Colesanti, A. (2013). Isoperimetry and stability of hyperplanes for product probability, measures.Annali di Matematica192165–190.
  • [7] Barthe, F., Cattiaux, P. and Roberto, C. (2006). Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and, isoperimetry.Rev. Mat. Iberoam.22993–1067.
  • [8] Bobkov, S. and Götze, F., (2009).Hardy Type Inequalities via Riccati and Sturm-Liouville EquationsInSobolev Spaces In Mathematics I: Sobolev Type Inequalities69–86. Springer New York.
  • [9] Bobkov, S. and Ledoux, M. (1997). Poincare’s inequalities and Talagrand’s concentration phenomenon for the exponential, distribution.Probability Theory and Related Fields107383–400.
  • [10] Bobkov, S. G. and Houdré, C. (1997). Isoperimetric constants for product probability, measures.The Annals of Probability25184–205.
  • [11] Brézis, H., (2010).Functional analysis, Sobolev spaces and partial differential equations. Springer.
  • [12] Chen, M. (1999). Analytic proof of dual variational formula for the first eigenvalue in dimension, one.Science in China Series A: Mathematics42805–815.
  • [13] Dautray, R. and Lions, J. L., (1990).Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications. Springer.
  • [14] de Jong, P. (1990). A central limit theorem for generalized multilinear, forms.Journal of Multivariate Analysis34275–289.
  • [15] de Rocquigny, E., Devictor, N. and Tarantola, S., eds., (2008).Uncertainty in industrial practice. Wiley.
  • [16] Djellout, H. and Wu, L. (2011). Lipschitzian norm estimate of one-dimensional Poisson equations and, applications.Ann. Inst. Henri Poincaré Probab. Stat.47450–465.
  • [17] Efron, B. and Stein, C. (1981). The jackknife estimate of, variance.The Annals of Statistics9586–596.
  • [18] Goutal, N., Lacombe, J. M., Zaoui, F. and El-Kadi-Abderrezak, K. (2012). MASCARET: a 1-D open-source software for flow hydrodynamic and water quality in open channel networks., InRiver Flow 2012: Proceedings of the International Conference on Fluvial Hydraulics(R. Murillo Muñoz, ed.)21169–1174. CRC Press, San José, Costa Rica.
  • [19] Griewank, A. and Walther, A., (2008).Evaluating derivatives: Principles and techniques of automatic differentiation. SIAM Philadelphia.
  • [20] Hoeffding, W. F. (1948). A class of statistics with asymptotically normal, distributions.Annals of Mathematical Statistics19293–325.
  • [21] Iooss, B. and Lemaitre, P. (2015). A review on global sensitivity analysis methods., InUncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications(C. Meloni and G. Dellino, eds.) 101–122. Springer.
  • [22] Iooss, B., Popelin, A.-L., Blatman, G., Ciric, C., Gamboa, F., Lacaze, S. and Lamboni, M. (2012). Some new insights in derivative-based global sensitivity measures., InProceedings of the PSAM11 ESREL 2012 Conference1094–1104.
  • [23] Kucherenko, S., Rodriguez-Fernandez, M., Pantelides, C. and Shah, N. (2009). Monte Carlo evaluation of derivative-based global sensitivity, measures.Reliability Engineering and System Safety941135–1148.
  • [24] Lamboni, M., Iooss, B., Popelin, A. L. and Gamboa, F. (2013). Derivative-based global sensitivity measures: General links with Sobol’ indices and numerical, tests.Mathematics and Computers in Simulation8745–54.
  • [25] Mossel, E., O’Donnell, R. and Oleszkiewicz, K. (2010). Noise stability of functions with low influences: invariance and, optimality.Annals of Mathematics (2)171295–341.
  • [26] Muckenhoupt, B. (1972). Hardy’s inequality with, weights.Studia Mathematica4431–38.
  • [27] Novomestky, F. (2013). orthopolynom: Collection of functions for orthogonal and orthonormal polynomials, R package version, 1.0-5.
  • [28] Petit, S., Zaoui, F., Popelin, A. L., Goeury, C. and Goutal, N. (2016). Couplage entre indices à base de dérivées et mode adjoint pour l’analyse de sensibilité globale. Application sur le code Mascaret., Preprint,https://hal.archives-ouvertes.fr/hal-01373535.
  • [29] Pujol, G., Iooss, B. and Janon, A. (2016). sensitivity: Global Sensitivity Analysis of Model Outputs, R package version, 1.13.
  • [30] Raviart, P. A. and Thomas, J. M., (1988).Introduction à l’analyse numérique des équations aux dérivés partielles. Masson.
  • [31] Roustant, O., Fruth, J., Iooss, B. and Kuhnt, S. (2014). Crossed-derivative based sensitivity measures for interaction, screening.Mathematics and Computers in Simulation105105–118.
  • [32] Rudin, W., (1987).Real and complex analysis, Third ed. McGraw-Hill Book Co., New York.
  • [33] Sobol, I. (1993). Sensitivity estimates for non linear mathematical, models.Mathematical Modelling and Computational Experiments1407–414.
  • [34] Sobol, I. and Kucherenko, S. (2009). Derivative-based global sensitivity measures and the link with global sensitivity, indices.Mathematics and Computers in Simulation793009–3017.
  • [35] R Core Team (2015). R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria.
  • [36] Touzany, S. and Busby, D. (2014). Screening Method Using the Derivative-based Global Sensitivity Indices with Application to Reservoir, Simulator.Oil & Gas Science and Technology – Rev. IFP Energies nouvelles69619–632.