Electronic Journal of Statistics

Poincaré inequalities on intervals – application to sensitivity analysis

Olivier Roustant, Franck Barthe, and Bertrand Iooss

Full-text: Open access


The development of global sensitivity analysis of numerical model outputs has recently raised new issues on 1-dimensional Poincaré inequalities. Typically two kinds of sensitivity indices are linked by a Poincaré type inequality, which provides upper bounds of the most interpretable index by using the other one, cheaper to compute. This allows performing a low-cost screening of unessential variables. The efficiency of this screening then highly depends on the accuracy of the upper bounds in Poincaré inequalities.

The novelty in the questions concern the wide range of probability distributions involved, which are often truncated on intervals. After providing an overview of the existing knowledge and techniques, we add some theory about Poincaré constants on intervals, with improvements for symmetric intervals. Then we exploit the spectral interpretation for computing exact value of Poincaré constants of any admissible distribution on a given interval. We give semi-analytical results for some frequent distributions (truncated exponential, triangular, truncated normal), and present a numerical method in the general case.

Finally, an application is made to a hydrological problem, showing the benefits of the new results in Poincaré inequalities to sensitivity analysis.

Article information

Electron. J. Statist. Volume 11, Number 2 (2017), 3081-3119.

Received: December 2016
First available in Project Euclid: 25 August 2017

Permanent link to this document

Digital Object Identifier

Poincaré inequality spectral gap truncated distribution Kummer’s functions Sobol-Hoeffding decomposition Sobol indices derivative-based global sensitivity measures finite elements

Creative Commons Attribution 4.0 International License.


Roustant, Olivier; Barthe, Franck; Iooss, Bertrand. Poincaré inequalities on intervals – application to sensitivity analysis. Electron. J. Statist. 11 (2017), no. 2, 3081--3119. doi:10.1214/17-EJS1310. https://projecteuclid.org/euclid.ejs/1503626422.

Export citation


  • [1] Abramowitz, M. and Stegun, I. (1972)., Handbook of Mathematical Functions. Dover Publications, Tenth printing.
  • [2] Allaire, G. (2007)., Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation. Numerical Mathematics and Scientific Computation. Oxford Science Publications.
  • [3] Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C. and Scheffer, G. (2000)., Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses 10. Société Mathématique de France, Paris.
  • [4] Babuska, I. and Osborn, J. (1991)., Eigenvalue Problems In Handbook of Numerical Analysis II 641–787. Elsevier Science.
  • [5] Bakry, D., Gentil, I. and Ledoux, M. (2014)., Analysis and geometry of Markov diffusion operators, volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham.
  • [6] Barthe, F., Bianchini, C. and Colesanti, A. (2013). Isoperimetry and stability of hyperplanes for product probability measures., Annali di Matematica 192 165–190.
  • [7] Barthe, F., Cattiaux, P. and Roberto, C. (2006). Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry., Rev. Mat. Iberoam. 22 993–1067.
  • [8] Bobkov, S. and Götze, F. (2009)., Hardy Type Inequalities via Riccati and Sturm-Liouville Equations In Sobolev Spaces In Mathematics I: Sobolev Type Inequalities 69–86. Springer New York.
  • [9] Bobkov, S. and Ledoux, M. (1997). Poincare’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution., Probability Theory and Related Fields 107 383–400.
  • [10] Bobkov, S. G. and Houdré, C. (1997). Isoperimetric constants for product probability measures., The Annals of Probability 25 184–205.
  • [11] Brézis, H. (2010)., Functional analysis, Sobolev spaces and partial differential equations. Springer.
  • [12] Chen, M. (1999). Analytic proof of dual variational formula for the first eigenvalue in dimension one., Science in China Series A: Mathematics 42 805–815.
  • [13] Dautray, R. and Lions, J. L. (1990)., Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications. Springer.
  • [14] de Jong, P. (1990). A central limit theorem for generalized multilinear forms., Journal of Multivariate Analysis 34 275–289.
  • [15] de Rocquigny, E., Devictor, N. and Tarantola, S., eds. (2008)., Uncertainty in industrial practice. Wiley.
  • [16] Djellout, H. and Wu, L. (2011). Lipschitzian norm estimate of one-dimensional Poisson equations and applications., Ann. Inst. Henri Poincaré Probab. Stat. 47 450–465.
  • [17] Efron, B. and Stein, C. (1981). The jackknife estimate of variance., The Annals of Statistics 9 586–596.
  • [18] Goutal, N., Lacombe, J. M., Zaoui, F. and El-Kadi-Abderrezak, K. (2012). MASCARET: a 1-D open-source software for flow hydrodynamic and water quality in open channel networks. In, River Flow 2012: Proceedings of the International Conference on Fluvial Hydraulics (R. Murillo Muñoz, ed.) 2 1169–1174. CRC Press, San José, Costa Rica.
  • [19] Griewank, A. and Walther, A. (2008)., Evaluating derivatives: Principles and techniques of automatic differentiation. SIAM Philadelphia.
  • [20] Hoeffding, W. F. (1948). A class of statistics with asymptotically normal distributions., Annals of Mathematical Statistics 19 293–325.
  • [21] Iooss, B. and Lemaitre, P. (2015). A review on global sensitivity analysis methods. In, Uncertainty management in Simulation-Optimization of Complex Systems: Algorithms and Applications (C. Meloni and G. Dellino, eds.) 101–122. Springer.
  • [22] Iooss, B., Popelin, A.-L., Blatman, G., Ciric, C., Gamboa, F., Lacaze, S. and Lamboni, M. (2012). Some new insights in derivative-based global sensitivity measures. In, Proceedings of the PSAM11 ESREL 2012 Conference 1094–1104.
  • [23] Kucherenko, S., Rodriguez-Fernandez, M., Pantelides, C. and Shah, N. (2009). Monte Carlo evaluation of derivative-based global sensitivity measures., Reliability Engineering and System Safety 94 1135–1148.
  • [24] Lamboni, M., Iooss, B., Popelin, A. L. and Gamboa, F. (2013). Derivative-based global sensitivity measures: General links with Sobol’ indices and numerical tests., Mathematics and Computers in Simulation 87 45–54.
  • [25] Mossel, E., O’Donnell, R. and Oleszkiewicz, K. (2010). Noise stability of functions with low influences: invariance and optimality., Annals of Mathematics (2) 171 295–341.
  • [26] Muckenhoupt, B. (1972). Hardy’s inequality with weights., Studia Mathematica 44 31–38.
  • [27] Novomestky, F. (2013). orthopolynom: Collection of functions for orthogonal and orthonormal polynomials, R package version, 1.0-5.
  • [28] Petit, S., Zaoui, F., Popelin, A. L., Goeury, C. and Goutal, N. (2016). Couplage entre indices à base de dérivées et mode adjoint pour l’analyse de sensibilité globale. Application sur le code Mascaret. Preprint, https://hal.archives-ouvertes.fr/hal-01373535.
  • [29] Pujol, G., Iooss, B. and Janon, A. (2016). sensitivity: Global Sensitivity Analysis of Model Outputs, R package version, 1.13.
  • [30] Raviart, P. A. and Thomas, J. M. (1988)., Introduction à l’analyse numérique des équations aux dérivés partielles. Masson.
  • [31] Roustant, O., Fruth, J., Iooss, B. and Kuhnt, S. (2014). Crossed-derivative based sensitivity measures for interaction screening., Mathematics and Computers in Simulation 105 105–118.
  • [32] Rudin, W. (1987)., Real and complex analysis, Third ed. McGraw-Hill Book Co., New York.
  • [33] Sobol, I. (1993). Sensitivity estimates for non linear mathematical models., Mathematical Modelling and Computational Experiments 1 407–414.
  • [34] Sobol, I. and Kucherenko, S. (2009). Derivative-based global sensitivity measures and the link with global sensitivity indices., Mathematics and Computers in Simulation 79 3009–3017.
  • [35] R Core Team (2015). R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria.
  • [36] Touzany, S. and Busby, D. (2014). Screening Method Using the Derivative-based Global Sensitivity Indices with Application to Reservoir Simulator., Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 69 619–632.