Electronic Journal of Statistics

Parametrically guided local quasi-likelihood with censored data

Majda Talamakrouni, Anouar El Ghouch, and Ingrid Van Keilegom

Full-text: Open access

Abstract

It is widely pointed out in the literature that misspecification of a parametric model can lead to inconsistent estimators and wrong inference. However, even a misspecified model can provide some valuable information about the phenomena under study. This is the main idea behind the development of an approach known, in the literature, as parametrically guided nonparametric estimation. Due to its promising bias reduction property, this approach has been investigated in different frameworks such as density estimation, least squares regression and local quasi-likelihood. Our contribution is concerned with parametrically guided local quasi-likelihood estimation adapted to randomly right censored data. The generalization to censored data involves synthetic data and local linear fitting. The asymptotic properties of the guided estimator as well as its finite sample performance are studied and compared with the unguided local quasi-likelihood estimator. The results confirm the bias reduction property and show that, using an appropriate guide and an appropriate bandwidth, the proposed estimator outperforms the classical local quasi-likelihood estimator.

Article information

Source
Electron. J. Statist. Volume 11, Number 2 (2017), 2773-2799.

Dates
Received: March 2016
First available in Project Euclid: 4 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1499133754

Digital Object Identifier
doi:10.1214/17-EJS1293

Zentralblatt MATH identifier
1371.62029

Keywords
Beran’s estimator generalized linear model local linear smoothing parametric guide quasi-likelihood method right censoring synthetic data

Rights
Creative Commons Attribution 4.0 International License.

Citation

Talamakrouni, Majda; El Ghouch, Anouar; Van Keilegom, Ingrid. Parametrically guided local quasi-likelihood with censored data. Electron. J. Statist. 11 (2017), no. 2, 2773--2799. doi:10.1214/17-EJS1293. https://projecteuclid.org/euclid.ejs/1499133754


Export citation

References

  • [1] Bartle, R., (1966).The Elements of Integration, John Wiley and Sons, New York.
  • [2] Beran, R. (1981). Nonparametric regression with randomly censored survival, data.Technical report, Univ. California, Berkeley.
  • [3] Buckley, J. and James, I. (1979). Linear regression with censored, data.Biometrika66(3), 429–436.
  • [4] Chen, J., Fan, J., Li, K. and Zhou, H. (2006). Local quasi-likelihood estimation with data missing at, random.Statist. Sinica16, 1071–1100.
  • [5] Dabrowska, D. M. (1987). Nonparametric regression with censored survival time, data.Scand. J. Stat.14, 181–197.
  • [6] Dabrowska, D. M. (1992). Variable bandwidth conditional Kaplan-Meier, estimate.Scand. J. Stat.19, 351–361.
  • [7] Davenport, C., Maity, A. and Wu, Y. (2015). Parametrically guided estimation in nonparametric varying coefficient models with, quasi-likelihood.J. Nonparametr. Statist.27, 195–213.
  • [8] Delecroix, M., Lopez, O. and Patilea, V. (2008). Nonlinear censored regression using synthetic, data.Scand. J. Stat.35, 248–265.
  • [9] Doksum, K. A. and Yandell, B. S. (1982). Properties of regression estimates based on censored survival. In Festschrift for Erich L. Lehmann (eds P. J. Bickel, K. A. Doskum, & J. L. Hodges), 140–156.
  • [10] El Ghouch, A. and Van Keilegom, I. (2008). Nonparametric regression with dependent censored, data.Scand. J. Stat.35, 228–247.
  • [11] Fan, J. and Chen, J. (1999). One-step local quasi-likelihood, estimation.J. Roy. Statist. Soc. Ser. B,64, 927–943.
  • [12] Fan, J. and Gijbels, I. (1994). Censored regression: local linear approximations and their, applications.J. Amer. Statist. Assoc.89, 560–570.
  • [13] Fan, J. and Gijbels, I., (1996).Local Polynomial Modeling and Its Applications. Chapman & Hall, London.
  • [14] Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood, functions.J. Amer. Statist. Assoc.90, 141–150.
  • [15] Fan, J., Maity, A., Wang, Y. and Wu, Y. (2014). Parametrically guided generalized additive models with application to mergers and acquisitions, data.J. Nonparametr. Statist.25, 109–128.
  • [16] Fan, J., Wu, Y. and Feng, Y. (2009). Local quasi-likelihood with a parametric, guide.Ann. Statist.37, 4153–4183.
  • [17] Glad, I. K. (1998 a). A note on unconditional properties of a parametrically guided Nadaraya-Watson, estimator.Statistics and Probability Letters37(1), 101–108.
  • [18] Glad, I. K. (1998 b). Parametrically guided nonparametric, regression.Scand. J. Stat.25, 649–668.
  • [19] Gonzalez-Manteiga, W. and Cadarso-Suarez, C. (1994). Asymptotic properties of generalized Kaplan-Meier estimator with some, applications.J. Nonparametr. Statist.4, 65–78.
  • [20] Green, P. J. and Yandell, B. S. (1985). Semi-parametric generalized linear models., InLecture Notes in Statistics32, 44–55.
  • [21] Heuchenne, C. and Van Keilegom, I. (2012). Estimation of a general parametric location in censored regression. In: Van Keilegom, I. and Wilson, P. W., (eds.),Exploring research frontiers in contemporary statistics and econometrics- Festschrift in honor of L. Simar, Springer, 177–187.
  • [22] Hjort, N. L. and Glad, I. K. (1995). Nonparametric density estimation with parametric, start.Ann. Statist.23, 882–904.
  • [23] Hunsberger, S. (1994). Semiparametric regression in likelihood-based, models.J. Amer. Statist. Assoc.89, 1354–1365.
  • [24] Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete, observations.J. Amer. Statist. Assoc.53, 457–481.
  • [25] Koul, H., Susarla, V. and Van Ryzin, J. (1981). Regression analysis with randomly right censored, data.Ann. Statist.9, 1276–1288.
  • [26] Lai, T. L. and Ying, Z. (1991). Large-sample theory of a modified Buckley-James estimator for regression analysis with censored, data.Ann. Statist.19, 1370–1402.
  • [27] Leurgans, S. (1987). Linear models, random censoring and synthetic, data.Biometrika74, 301–309.
  • [28] Lopez, O. (2011). Nonparametric estimation of the multivariate distribution function in a censored regression model with, applications.Comm. Statist. Theory Methods40, 2639–2660.
  • [29] Lu, X. and Cheng, T. L. (2007). Randomly censored partially linear single-index, models.J. Multivariate Anal.98(10), 1895–1922.
  • [30] Martins-Filho, C., Mishra, S. and Ullah, A. (2008). A class of improved parametrically guided nonparametric regression, estimators.Econometric Reviews27, 542–573.
  • [31] McCullagh, P. and Nelder, J. A., (1989).Generalized Linear Models, 2nd ed. Chapman & Hall.
  • [32] Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear, models.J. Roy. Statist. Soc. Ser. A135, 370–384.
  • [33] Newey, W. K. and McFadden, D. (1999). Large sample estimation and hypothesis testing., InHandbook of Econometrics. Vol.4. Edited by D. McFadden & R. Engle, Amsterdam, The Netherlands.
  • [34] O’Sullivan, F., Yandell, B. S. and Raynor, W. (1986). Automatic smoothing of regression functions in generalized linear, models.J. Amer. Statist. Assoc.81, 96–103.
  • [35] Rahman, M. and Ullah, A. (2002). Improved combined parametric and nonparametric regression: estimation and hypothesis testing., InHandbook of Applied Econometrics and Statistical Inference, Edited by Ullah, A., Wan, A., Chaturvedi, A. Marcel Dekker, New York.
  • [36] Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood estimation in semi-parametric, models.J. Amer. Statist. Assoc.89, 501–511.
  • [37] Staniswalis, J. G. (1989). The kernel estimate of a regression function in likelihood-based, models.J. Amer. Statist. Assoc.84, 276–283.
  • [38] Suzukawa, A., Imai, H. and Sato, Y. (2001). Kullback-Leibler information consistent estimation for censored, data.Ann. Inst. Statist. Math.53, 262–276.
  • [39] Talamakrouni, M., El Ghouch, A. and Van Keilegom, I. (2015). Guided censored, regression.Scand. J. Stat.42, 214–233.
  • [40] Talamakrouni, M., Van Keilegom, I. and El Ghouch, A. (2016). Parametrically guided nonparametric density and hazard estimation with censored, data.Comput. Statist. Data Anal.93, 308–323.
  • [41] Van Keilegom, I. and Akritas, M. G. (1999). Transfer of tail information in censored regression, models.Ann. Statist.27, 1745–1784.
  • [42] Van Keilegom, I. and Veraverbeke, N. (1997). Estimation and bootstrap with censored data in fixed design nonparametric, regression.Ann. Inst. Statist. Math.49, 467–491.
  • [43] Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton, method.Biometrika61, 439–447.
  • [44] Yu, L., Yu, R. and Liu, L. (2009). Quasi-likelihood for right-censored data in the generalized linear, model.Comm. Statist. Theory Methods38, 2187–2200.
  • [45] Yu, L. (2011). Nonparametric quasi-likelihood for right censored, data.Lifetime Data Anal.17, 594–607.
  • [46] Yu, L. and Peace, K. E. (2012). Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time, model.Comput. Statist. Data Anal.56, 2657–2687.
  • [47] Yu, L., Yu, R., Liu, L. and Chen, D. G. (2012). Extended quasi-likelihood with fractional polynomials in the frame of the accelerated failure time, model.Statistics in Medicine31(13), 1369–1379.
  • [48] Zheng, Z. (1987). A class of estimators of the parameters in linear regression with censored, data.Acta Mathematicae Applicatae Sinica3, 231–241.