Electronic Journal of Statistics

Power of change-point tests for long-range dependent data

Herold Dehling, Aeneas Rooch, and Murad S. Taqqu

Full-text: Open access

Abstract

We investigate the power of the CUSUM test and the Wilcoxon change-point tests for a shift in the mean of a process with long-range dependent noise. We derive analytic formulas for the power of these tests under local alternatives. These results enable us to calculate the asymptotic relative efficiency (ARE) of the CUSUM test and the Wilcoxon change point test. We obtain the surprising result that for Gaussian data, the ARE of these two tests equals $1$, in contrast to the case of i.i.d. noise when the ARE is known to be $3/\pi$.

Article information

Source
Electron. J. Statist., Volume 11, Number 1 (2017), 2168-2198.

Dates
Received: October 2014
First available in Project Euclid: 19 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1495159237

Digital Object Identifier
doi:10.1214/17-EJS1283

Mathematical Reviews number (MathSciNet)
MR3654823

Zentralblatt MATH identifier
1378.62064

Subjects
Primary: 62M10: Time series, auto-correlation, regression, etc. [See also 91B84] 62G30: Order statistics; empirical distribution functions 60F17: Functional limit theorems; invariance principles

Keywords
Nonparametric change-point tests Wilcoxon two-sample rank test power of test asymptotic relative efficiency of tests long-range dependent data

Rights
Creative Commons Attribution 4.0 International License.

Citation

Dehling, Herold; Rooch, Aeneas; Taqqu, Murad S. Power of change-point tests for long-range dependent data. Electron. J. Statist. 11 (2017), no. 1, 2168--2198. doi:10.1214/17-EJS1283. https://projecteuclid.org/euclid.ejs/1495159237


Export citation

References

  • [1] Jaromír Antoch, Marie Hušková, Alicja Janic and Teresa Ledwina (2008): Data Driven Rank Tests for the Change Point Problem., Metrika 68, 1–15.
  • [2] Samir Ben Hariz and Jonathan J. Wylie (2005): Rates of Convergence for the Change-Point Estimator for Long-Range Dependent Sequences., Statistics and Probability Letters 73, 155–164.
  • [3] Samir Ben Hariz, Jonathan J. Wylie and Qiang Zhang (2005): Optimal Rate of Convergence for Nonparametric Change-Point Estimators for Nonstationary Sequences., The Annals of Statistics 35, 1802–1826.
  • [4] Jan Beran (1991): M-Estimators of Location for Data with Slowly Decaying Serial Correlations., Journal of the American Statistical Association 86, 704–708.
  • [5] Jan Beran (1994):, Statistics for Long-Memory Processes. Chapman & Hall, New York.
  • [6] Jan Beran, Yuanhua Feng, Sucharita Ghosh and Rafal Kulik (2013):, Long-Memory Processes. Springer Verlag, Berlin.
  • [7] Miklós Csörgő and Lajos Horváth (1988): Invariance Principle for Changepoint Problems., Journal of Multivariate Analysis 27, 151–168.
  • [8] Miklós Csörgő and Lajos Horváth (1997):, Limit Theorems in Change-Point Analysis. J. Wiley & Sons, Chichester.
  • [9] Herold Dehling and Murad S. Taqqu (1989): The Empirical Process of Some Long-Range Dependent Sequences with an Application to U-Statistics., The Annals of Statistics 17, 1767–1783.
  • [10] Herold Dehling, Aeneas Rooch and Murad S. Taqqu (2013): Nonparametric Change-Point Tests for Long-Range Dependent Data., Scandinavian Journal of Statistics 40, 153–173.
  • [11] Lajos Horváth and Piotr Kokoszka (1997): The Effect of Long-Range Dependence on Change-Point Estimators., Journal of Statistical Planning and Inference 64, 57–81.
  • [12] Vladas Pipiras and Murad S. Taqqu (2010): Regularization and Integral Representations of Hermite Processes., Statistics and Probability Letters 80, 697–705.
  • [13] Galen R. Shorack and Jon A. Wellner (1986):, Empirical Processes with Applications to Statistics. John Wiley & Sons, New York.
  • [14] Murad S. Taqqu (1979): Convergence of Integrated Processes of Arbitrary Hermite Rank., Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 50, 53–83.
  • [15] Lihong Wang (2008): Change-Point Detection with Rank Statistics in Long-Memory Time-Series Models., Australian & New Zealand Journal of Statistics 50, 241–256.