Electronic Journal of Statistics

Parameter estimation of Gaussian stationary processes using the generalized method of moments

Luis A. Barboza and Frederi G. Viens

Full-text: Open access

Abstract

We consider the class of all stationary Gaussian process with explicit parametric spectral density. Under some conditions on the autocovariance function, we defined a GMM estimator that satisfies consistency and asymptotic normality, using the Breuer-Major theorem and previous results on ergodicity. This result is applied to the joint estimation of the three parameters of a stationary Ornstein-Uhlenbeck (fOU) process driven by a fractional Brownian motion. The asymptotic normality of its GMM estimator applies for any $H$ in $(0,1)$ and under some restrictions on the remaining parameters. A numerical study is performed in the fOU case, to illustrate the estimator’s practical performance when the number of datapoints is moderate.

Article information

Source
Electron. J. Statist., Volume 11, Number 1 (2017), 401-439.

Dates
Received: April 2016
First available in Project Euclid: 20 February 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1487581428

Digital Object Identifier
doi:10.1214/17-EJS1230

Mathematical Reviews number (MathSciNet)
MR3611508

Zentralblatt MATH identifier
06702349

Subjects
Primary: 62M09: Non-Markovian processes: estimation 62F10: Point estimation
Secondary: 62F12: Asymptotic properties of estimators

Keywords
Fractional Brownian motion Ornstein Uhlenbeck process method of moments

Rights
Creative Commons Attribution 4.0 International License.

Citation

Barboza, Luis A.; Viens, Frederi G. Parameter estimation of Gaussian stationary processes using the generalized method of moments. Electron. J. Statist. 11 (2017), no. 1, 401--439. doi:10.1214/17-EJS1230. https://projecteuclid.org/euclid.ejs/1487581428


Export citation

References

  • [1] Luis Barboza, Bo Li, Martin P. Tingley, and Frederi G. Viens, Reconstructing Past Temperatures from Natural Proxies and Estimated Climate Forcings using Short- and Long-Memory Models, The Annals of Applied Statistics 8 (2014), no. 4, 1966–2001.
  • [2] J. M. Bardet, G. Lang, E. Moulines, and P. Soulier, Wavelet Estimator of Long-Range Dependent Processes, Statistical Inference for Stochastic Processes 3 (2000), no. 1–2, 85–99 (en).
  • [3] Jan Beran, Statistics for long-memory processes, Monographs on Statistics and Applied Probability, 61, Chapman & Hall, 1994.
  • [4] H. Biermé and F. Richard, Estimation of anisotropic Gaussian fields through Radon transform, ESAIM: Probability and Statistics 12 (2008), no. 1, 30–50.
  • [5] Hermine Biermé, Aline Bonami, and José R. Leon, Central Limit Theorems and Quadratic Variations in Terms of Spectral Density, Electronic Journal of Probability 16 (2011), 362–395.
  • [6] Péter Breuer and Péter Major, Central limit theorems for non-linear functionals of Gaussian fields, Journal of Multivariate Analysis 13 (1983), no. 3, 425–441.
  • [7] Peter J. Brockwell and Richard A. Davis, Time Series: Theory and Methods (Springer Series in Statistics), second ed., Springer, 2009.
  • [8] Alexandre Brouste and Stefano M. Iacus, Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package, Computational Statistics 28 (2012), no. 4, 1529–1547.
  • [9] Richard H. Byrdt, Peihuang Lut, Jorge Nocedalt, Ciyou Zhu, R. H. Byrd, P. Lu, J. Nocedal, and Ciyou Zhu, A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientific Computing 16 (1995), no. 5, 1190–1208.
  • [10] Patrick Cheridito, Hideyuki Kawaguchi, and Makoto Maejima, Fractional Ornstein-Uhlenbeck processes, Electronic Journal of Probability 8 (2003), no. 3, 1–14.
  • [11] A. Chronopoulou, F. G. Viens, and C. A. Tudor, Variations and Hurst index estimation for a Rosenblatt process using longer filters, Electronic Journal of Statistics 3 (2009), 1393–1435.
  • [12] Alexandra Chronopoulou, Ciprian A. Tudor, and Frederi G. Viens, Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes, Comptes Rendus Mathematique 347 (2009), no. 11–12, 663–666.
  • [13] Alexandra Chronopoulou and Frederi G. Viens, Stochastic Volatility and Option Pricing with Long-Memory in Discrete and Continuous Time, Quantitative Finance 12 (2012), no. 4, 635–649.
  • [14] Jean-Francois Coeurjolly, Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths, Statistical Inference for Stochastic Processes (2001), no. 4, 199–227.
  • [15] Rainer Dahlhaus, Efficient Parameter Estimation for Self-Similar Processes, The Annals of Statistics 17 (1989), no. 4, 1749–1766.
  • [16] B. El Onsy, Khalifa Es-Sebaiy, and Frederi G. Viens, Parameter Estimation for Ornstein-Uhlenbeck driven by fractional Ornstein-Uhlenbeck processes, Preprint, in revision for Stochastics. (2014).
  • [17] Khalifa Es-Sebaiy and Frederi G. Viens, Parameter estimation for SDEs related to stationary Gaussian processes, Preprint (2015).
  • [18] P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion, IEEE Transactions on Information Theory 38 (1992), no. 2, 910–917.
  • [19] Robert Fox and Murad S. Taqqu, Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series, The Annals of Statistics 14 (1986), no. 2, 517–532 (EN).
  • [20] David Gale and Hukukane Nikaido, The Jacobian matrix and global univalence of mappings, Mathematische Annalen 159 (1965), no. 2, 81–93.
  • [21] Ulf Grenander, Stochastic processes and statistical inference, Arkiv för Matematik 1 (1950), no. 3, 195–277.
  • [22] Alastair R. Hall, Generalized Method of Moments (Advanced Texts in Econometrics), Oxford University Press, USA, 2005.
  • [23] L. P. Hansen, J. Heaton, and A. Yaron, Finite-sample properties of some alternative GMM estimators, Journal of Business & Economic Statistics 14 (1996), no. 3, 262–280.
  • [24] Lars P. Hansen, Large Sample Properties of Generalized Method of Moments Estimators, Econometrica 50 (1982), no. 4, 1029–1054.
  • [25] Yaozhong Hu and David Nualart, Parameter estimation for fractional Ornstein-Uhlenbeck processes, Statistics & Probability Letters 80 (2010), no. 11–12, 1–16.
  • [26] Yaozhong Hu and Jian Song, Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes with Discrete Observations, Malliavin Calculus and Stochastic Analysis, Springer Proceedings in Mathematics & Statistics, Springer US, 2013, pp. 427–442.
  • [27] J. Istas and G. Lang, Quadratic variations and estimation of the local Hölder index of a Gaussian process, Annales de l’Institut Henri Poincare (B) Probability and Statistics 33 (1997), no. 4, 407–436.
  • [28] Svante Janson, Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, 1997.
  • [29] M. L. Kleptsyna and A. Le Breton, Statistical Analysis of the Fractional Ornstein-Uhlenbeck Type Process, Statistical Inference for Stochastic Processes 5 (2002), no. 3, 229–248.
  • [30] T. H. Koornwinder, R. Wong, R. Koekoek, and R. F. Swarttouw, Orthogonal Polynomials, NIST Handbook of Mathematical Functions (Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, eds.), Cambridge University Press, 2010.
  • [31] Guy Lebanon, Probability: The Analysis of Data, vol. 1, CreateSpace Independent Publishing Platform, 2012.
  • [32] Offer Lieberman, Roy Rosemarin, and Judith Rousseau, Asymptotic Theory for Maximum Likelihood Estimation of the Memory Parameter in Stationary Gaussian Processes, Econometric Theory 28 (2011), no. 02, 457–470 (English).
  • [33] Mikhail Lifshits, Lectures on Gaussian Processes, SpringerBriefs in Mathematics, Springer, 2012.
  • [34] Robert S. Liptser and Albert N. Shiryaev, Statistics of Random Processes II, second ed., Springer, 2000.
  • [35] E. Moulines, F. Roueff, and Murad S. Taqqu, Central limit theorem for the log-regression wavelet estimation of the memory parameter in the gaussian semi-parametric context, Fractals 15 (2007), no. 04, 301–313 (en).
  • [36] Whitney K. Newey and Daniel McFadden, Large sample estimation and hypothesis testing, Handbook of Econometrics (Robert F. Engle and Daniel L. McFadden, eds.), vol. 4, Elsevier, 1994, pp. 2111–2245.
  • [37] Jorge Nocedal and Stephen Wright, Numerical Optimization, second ed., Springer Series in Operations Research and Financial Engineering, Springer, 2006.
  • [38] Ivan Nourdin and Giovanni Peccati, Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality, Cambridge Tracts in Mathematics, Cambridge University Press, 2012.
  • [39] D. Nualart and S. Ortiz-Latorre, Central limit theorems for multiple stochastic integrals and Malliavin calculus, Stochastic Processes and their Applications 118 (2008), no. 4, 614–628.
  • [40] David Nualart, The Malliavin Calculus and Related Topics (Probability and Its Applications), second ed., Springer, 2010.
  • [41] Pham-Dinh-Tuan, Estimation of parameters of a continuous time Gaussian stationary process with rational spectral density, Biometrika 64 (1977), no. 2, 385–399.
  • [42] Mark J. Schervish, Theory of Statistics, Springer Series in Statistics, Springer, 1997.
  • [43] Ciprian Tudor and Frederi Viens, Variations of the fractional Brownian motion via Malliavin calculus, To appear in Australian Journal of Mathematics (2008).
  • [44] Ciprian A. Tudor and Frederi G. Viens, Statistical Aspects of the Fractional Stochastic Calculus, The Annals of Statistics 35 (2007), no. 3, 1183–1212.
  • [45] Ciprian A. Tudor and Frederi G. Viens, Variations and estimators for self-similarity parameters via Malliavin calculus, Annals of Probability 37 (2009), no. 6, 2093–2134.
  • [46] Weilin Xiao, Weiguo Zhang, and Weidong Xu, Parameter estimation for fractional Ornstein–Uhlenbeck processes at discrete observation, Applied Mathematical Modelling 35 (2011), no. 9, 4196–4207.
  • [47] Pu Zhang, Wei Lin Xiao, Xi Li Zhang, and Pan Qiang Niu, Parameter identification for fractional Ornstein-Uhlenbeck processes based on discrete observation, Economic Modelling 36 (2014), 198–203.