Electronic Journal of Statistics
- Electron. J. Statist.
- Volume 10, Number 2 (2016), 3579-3620.
Nonparametric modal regression in the presence of measurement error
Haiming Zhou and Xianzheng Huang
Abstract
In the context of regressing a response $Y$ on a predictor $X$, we consider estimating the local modes of the distribution of $Y$ given $X=x$ when $X$ is prone to measurement error. We propose two nonparametric estimation methods, with one based on estimating the joint density of $(X,Y)$ in the presence of measurement error, and the other built upon estimating the conditional density of $Y$ given $X=x$ using error-prone data. We study the asymptotic properties of each proposed mode estimator, and provide implementation details including the mean-shift algorithm for mode seeking and bandwidth selection. Numerical studies are presented to compare the proposed methods with an existing mode estimation method developed for error-free data naively applied to error-prone data.
Article information
Source
Electron. J. Statist., Volume 10, Number 2 (2016), 3579-3620.
Dates
Received: May 2016
First available in Project Euclid: 24 November 2016
Permanent link to this document
https://projecteuclid.org/euclid.ejs/1479956457
Digital Object Identifier
doi:10.1214/16-EJS1210
Mathematical Reviews number (MathSciNet)
MR3575565
Zentralblatt MATH identifier
1357.62185
Subjects
Primary: 62G08: Nonparametric regression
Secondary: 62G20: Asymptotic properties
Keywords
Bandwidth selection deconvoluting kernel Fourier transform local mode mean-shift algorithm
Citation
Zhou, Haiming; Huang, Xianzheng. Nonparametric modal regression in the presence of measurement error. Electron. J. Statist. 10 (2016), no. 2, 3579--3620. doi:10.1214/16-EJS1210. https://projecteuclid.org/euclid.ejs/1479956457

