Electronic Journal of Statistics

Estimation of low rank density matrices: Bounds in Schatten norms and other distances

Dong Xia and Vladimir Koltchinskii

Full-text: Open access


Let $\mathcal{S}_{m}$ be the set of all $m\times m$ density matrices (Hermitian positively semi-definite matrices of unit trace). Consider a problem of estimation of an unknown density matrix $\rho\in\mathcal{S}_{m}$ based on outcomes of $n$ measurements of observables $X_{1},\dots,X_{n}\in\mathbb{H}_{m}$ ($\mathbb{H}_{m}$ being the space of $m\times m$ Hermitian matrices) for a quantum system identically prepared $n$ times in state $\rho.$ Outcomes $Y_{1},\dots,Y_{n}$ of such measurements could be described by a trace regression model in which $\mathbb{E}_{\rho}(Y_{j}|X_{j})={\rm tr}(\rho X_{j}),j=1,\dots,n.$ The design variables $X_{1},\dots,X_{n}$ are often sampled at random from the uniform distribution in an orthonormal basis $\{E_{1},\dots,E_{m^{2}}\}$ of $\mathbb{H}_{m}$ (such as Pauli basis). The goal is to estimate the unknown density matrix $\rho$ based on the data $(X_{1},Y_{1}),\dots,(X_{n},Y_{n}).$ Let \[\hat{Z}:=\frac{m^{2}}{n}\sum_{j=1}^{n}Y_{j}X_{j}\] and let $\check{\rho}$ be the projection of $\hat{Z}$ onto the convex set $\mathcal{S}_{m}$ of density matrices. It is shown that for estimator $\check{\rho}$ the minimax lower bounds in classes of low rank density matrices (established earlier) are attained up logarithmic factors for all Schatten $p$-norm distances, $p\in[1,\infty]$ and for Bures version of quantum Hellinger distance. Moreover, for a slightly modified version of estimator $\check{\rho}$ the same property holds also for quantum relative entropy (Kullback-Leibler) distance between density matrices.

Article information

Electron. J. Statist., Volume 10, Number 2 (2016), 2717-2745.

Received: April 2016
First available in Project Euclid: 12 September 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62J99: None of the above, but in this section 81P50: Quantum state estimation, approximate cloning
Secondary: 62H12: Estimation

Quantum state tomography low rank density matrix Schatten $p$-norms Kullback-Leibler divergence von Neumann entropy


Xia, Dong; Koltchinskii, Vladimir. Estimation of low rank density matrices: Bounds in Schatten norms and other distances. Electron. J. Statist. 10 (2016), no. 2, 2717--2745. doi:10.1214/16-EJS1192. https://projecteuclid.org/euclid.ejs/1473685452

Export citation


  • [1] P. Alquier, C. Butucea, M. Hebiri, K. Meziani, and T. Morimae. Rank penalized estimation of a quantum system., Physical Reviews A, 88 :032113, 2013.
  • [2] J.-P. Aubin and I. Ekeland., Applied Nonlinear Analysis. Courier Corporation, 2006.
  • [3] K. Audenaert and J. Eisert. Continuity bounds on the quantum relative entropy - ii., Journal of Mathematical Physics, 52 (112201), 2011.
  • [4] R. Bhatia., Matrix Analisis. Springer, 1997.
  • [5] C. Butucea, M. Guta, and T. Kyparios. Spectral thresholding quantum tomography for low rank states. arxiv :1504.08295, 2015.
  • [6] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion., SIAM Journal on Optimization, 20(4) :1956–1982, 2010.
  • [7] E. J. Candès and Y. Plan. Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements., IEEE Transactions on Information Theory, 57(4) :2342–2359, 2011.
  • [8] E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix completion., IEEE Transactions on Information Theory, 56(5) :2053–2080, 2010.
  • [9] Y. Chen and X. Ye. Projection onto a simplex. arXiv preprint, arXiv :1101.6081, 2011.
  • [10] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert. Quantum tomography via compressed sensing: Error bounds, sample complexity and efficient estimators., New Journal of Physics, 14(9) :095022, 2012.
  • [11] G. H. Golub and C. F. Van Loan., Matrix Computations, volume 3. JHU Press, 2012.
  • [12] D. Gross. Recovering low-rank matrices from few coefficients in any basis., IEEE Transactions on Information Theory, 57(3) :1548–1566, 2011.
  • [13] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert. Quantum state tomography via compressed sensing., Physical Review Letters, 105(15) :150401, 2010.
  • [14] M. Kabanava, R. Kueng, H. Rauhut, and U. Terstiege. Stable low-rank matrix recovery via null space properties. arxiv :1507:07184, 2015.
  • [15] A. Kalev, R. L. Kosut, and I. H. Deutsch. Quantum tomography protocols with positivity are compressed sensing protocols., npj Quantum Information, 1 (15018), 2015.
  • [16] H. Klauck, A. Nayak, A. Ta-Shma, and D. Zuckerman. Interaction in quantum communication., IEEE Transactions on Information Theory, 53(6) :1970–1982, 2007.
  • [17] O. Klopp. Noisy low-rank matrix completion with general sampling distribution., Bernoulli, 20(1):282–303, 2014.
  • [18] V. Koltchinskii., Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems: École d’Été de Probabilités de Saint-Flour XXXVIII -2008. Springer, 2011.
  • [19] V. Koltchinskii. von Neumann entropy penalization and low-rank matrix estimation., The Annals of Statistics, 39(6) :2936–2973, 2011.
  • [20] V. Koltchinskii. A remark on low rank matrix recovery and noncommutative Bernstein type inequalities. In, From Probability to Statistics and Back: High-Dimensional Models and Processes–A Festschrift in Honor of Jon A. Wellner, pages 213–226. Institute of Mathematical Statistics, 2013.
  • [21] V. Koltchinskii. Sharp oracle inequalities in low rank estimation. In, Empirical Inference, pages 217–230. Springer, 2013.
  • [22] V. Koltchinskii, K. Lounici, and A. B. Tsybakov. Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion., The Annals of Statistics, 39(5) :2302–2329, 2011.
  • [23] V. Koltchinskii and D. Xia. Optimal estimation of low rank density matrices., Journal of Machine Learning Research, 16(Sep) :1757–1792, 2015.
  • [24] Y.-K. Liu. Universal low-rank matrix recovery from Pauli measurements. In, Advances in Neural Information Processing Systems, pages 1638–1646, 2011.
  • [25] K. Lounici. Optimal spectral norm rates for noisy low-rank matrix completion. arxiv :1110.5346, 2011.
  • [26] Z. Ma and Y. Wu. Volume ratio, sparsity, and minimaxity under unitarily invariant norms., IEEE Transactions on Information Theory, 61(12) :6939–6956, 2015.
  • [27] C. Michelot. A finite algorithm for finding the projection of a point onto the canonical simplex of $\mathbbR^n$., Journal of Optimization Theory and Applications, 50(1):195–200, 1986.
  • [28] S. Negahban and M. J. Wainwright. Estimation of (near) low-rank matrices with noise and high-dimensional scaling., The Annals of Statistics, 39(2) :1069–1097, 2011.
  • [29] M. Nielsen and I. Chuang., Quantum Computation and Quantum Information. Cambridge University Press, 2000.
  • [30] S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft projections onto polyhedra., Journal of Machine Learning Research, 7 :1567–1599, 2006.
  • [31] J. A. Tropp. User-friendly tail bounds for sums of random matrices., Foundations of Computational Mathematics, 12(4):389–434, 2012.