Electronic Journal of Statistics

Empirical likelihood based tests for stochastic ordering under right censorship

Hsin-wen Chang and Ian W. McKeague

Full-text: Open access

Abstract

This paper develops an empirical likelihood (EL) approach to testing for stochastic ordering between two univariate distributions under right censorship. The proposed test is based on a maximally selected local EL statistic. The asymptotic null distribution is expressed in terms of a Brownian bridge. The new procedure is shown via a simulation study to have superior power to the log-rank and weighted Kaplan–Meier tests under crossing hazard alternatives. The approach is illustrated using data from a randomized clinical trial involving the treatment of severe alcoholic hepatitis.

Article information

Source
Electron. J. Statist., Volume 10, Number 2 (2016), 2511-2536.

Dates
Received: August 2015
First available in Project Euclid: 8 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1473360697

Digital Object Identifier
doi:10.1214/16-EJS1180

Mathematical Reviews number (MathSciNet)
MR3545467

Zentralblatt MATH identifier
1346.62097

Subjects
Primary: 62G30: Order statistics; empirical distribution functions 62G10: Hypothesis testing 62N03: Testing 62G20: Asymptotic properties

Keywords
Crossing survival/hazard functions order restricted inference survival analysis two-sample problem

Citation

Chang, Hsin-wen; McKeague, Ian W. Empirical likelihood based tests for stochastic ordering under right censorship. Electron. J. Statist. 10 (2016), no. 2, 2511--2536. doi:10.1214/16-EJS1180. https://projecteuclid.org/euclid.ejs/1473360697


Export citation

References

  • [1] Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993)., Statistical Models Based on Counting Processes. New York: Springer.
  • [2] Andrews, D. W. K. and Guggenberger, P. (2009). Validity of subsampling and “plug-in asymptotic” inference for parameters defined by moment inequalities., Econometric Theory, 25:669–709.
  • [3] Borgan, Ø. and Liestøl, K. (1990). A note on confidence intervals and bands for the survival function based on transformations., Scandinavian Journal of Statistics, 17(1):35–41.
  • [4] Boyd, S. and Vandenberghe, L. (2004)., Convex Optimization. Cambridge University Press.
  • [5] Canay, I. A. (2010). EL inference for partially identified models: large deviations optimality and bootstrap validity., Journal of Econometrics, 156(2):408–425.
  • [6] Chang, H. and McKeague, I. W. (2016). Supplement to “Empirical likelihood based tests for stochastic ordering under right censorship.” DOI:, 10.1214/16-EJS1180SUPP.
  • [7] Davidov, O., Fokianos, K., and Iliopoulos, G. (2010). Order-restricted semiparametric inference for the power bias model., Biometrics, 66(2):549–557.
  • [8] Davidov, O. and Herman, A. (2009). New tests for stochastic order with application to case control studies., Journal of Statistical Planning and Inference, 139(8):2614–2623.
  • [9] Davidov, O. and Herman, A. (2012). Ordinal dominance curve based inference for stochastically ordered distributions., Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(5):825–847.
  • [10] Dykstra, R. L. (1982). Maximum likelihood estimation of the survival functions of stochastically ordered random variables., Journal of the American Statistical Association, 77(379):621–628.
  • [11] Einmahl, J. H. J. and McKeague, I. W. (2003). Empirical likelihood based hypothesis testing., Bernoulli, 9(2):267–290.
  • [12] El Barmi, H. (1996). Empirical likelihood ratio test for or against a set of inequality constraints., Journal of Statistical Planning and Inference, 55(2):191–204.
  • [13] El Barmi, H. and McKeague, I. W. (2013). Empirical likelihood based tests for stochastic ordering., Bernoulli, 19:295–307.
  • [14] El Barmi, H. and Mukerjee, H. (2005). Inferences under a stochastic ordering constraint: the $k$-sample case., Journal of the American Statistical Association, 100(469):252–261.
  • [15] Finner, H. and Strassburger, K. (2002). The partitioning principle: a powerful tool in multiple decision theory., The Annals of Statistics, 30(4):1194–1213.
  • [16] Fleming, T. R. and Harrington, D. P. (1991)., Counting Processes and Survival Analysis. John Wiley & Sons, Inc.
  • [17] Gill, R. D. (1980)., Censoring and Stochastic Integrals. Mathematisch Centrum.
  • [18] Guyot, P., Ades, A. E., Ouwens, M. J. N. M., and Welton, N. J. (2012). Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan–Meier survival curves., BMC Medical Research Methodology, 12(1):9.
  • [19] Hall, P. and La Scala, B. (1990). Methodology and algorithms of empirical likelihood., International Statistical Review // Revue Internationale de Statistique, 58(2):109–127.
  • [20] Hollander, M., McKeague, I. W., and Yang, J. (1997). Likelihood ratio-based confidence bands for survival functions., Journal of the American Statistical Association, 92:215–226.
  • [21] Kitamura, Y., Santos, A., and Shaikh, A. M. (2012). On the asymptotic optimality of empirical likelihood for testing moment restrictions., Econometrica, 80(1):413–423.
  • [22] Li, G. (1995a). Nonparametric likelihood ratio estimation of probabilities for truncated data., Journal of the American Statistical Association, 90(431):997–1003.
  • [23] Li, G. (1995b). On nonparametric likelihood ratio estimation of survival probabilities for censored data., Statistics & Probability Letters, 25:95–104.
  • [24] McKeague, I. W. and Zhao, Y. (2002). Simultaneous confidence bands for ratios of survival functions via empirical likelihood., Statistics & Probability Letters, 60:405–415.
  • [25] Mukerjee, R. (1994). Comparison of tests in their original forms., Sankhyā: The Indian Journal of Statistics, Series A (1961–2002), 56(1):118–127.
  • [26] Murphy, S. A. (1995). Likelihood ratio-based confidence intervals in survival analysis., Journal of the American Statistical Association, 90(432):1399–1405.
  • [27] Nair, V. N. (1984). Confidence bands for survival functions with censored data: a comparative study., Technometrics, 26(3):265–275.
  • [28] Nguyen-Khac, E., Thevenot, T., Piquet, M.-A., Benferhat, S., Goria, O., Chatelain, D., Tramier, B., Dewaele, F., Ghrib, S., Rudler, M., Carbonell, N., Tossou, H., Bental, A., Bernard-Chabert, B., and Dupas, J.-L. (2011). Glucocorticoids plus, N-acetylcysteine in severe alcoholic hepatitis. New England Journal of Medicine, 365(19):1781–1789.
  • [29] Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional., Biometrika, 75(2):237–249.
  • [30] Owen, A. B. (2001)., Empirical Likelihood. Chapman & Hall/CRC, Boca Raton.
  • [31] Park, Y., Kalbfleisch, J. D., and Taylor, J. M. G. (2012a). Constrained nonparametric maximum likelihood estimation of stochastically ordered survivor functions., Canadian Journal of Statistics, 40(1):22–39.
  • [32] Park, Y., Taylor, J. M. G., and Kalbfleisch, J. D. (2012b). Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions., Biometrika, 99(2):327–343.
  • [33] Parzen, M. I., Wei, L. J., and Ying, Z. (1997). Simultaneous confidence intervals for the difference of two survival functions., Scandinavian Journal of Statistics, 24(3):pp. 309–314.
  • [34] Pepe, M. S. and Fleming, T. R. (1989). Weighted Kaplan–Meier statistics: a class of distance tests for censored survival data., Biometrics, 45(2):497–507.
  • [35] Thomas, D. R. and Grunkemeier, G. L. (1975). Confidence interval estimation of survival probabilities for censored data., Journal of the American Statistical Association, 70:865–871.
  • [36] van der Vaart, A. W. (2000)., Asymptotic Statistics. Cambridge Series on Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.
  • [37] Wang, Q.-H. and Jing, B.-Y. (2001). Empirical likelihood for a class of functionals of survival distribution with censored data., Annals of the Institute of Statistical Mathematics, 53:517–527.
  • [38] Yu, W., El Barmi, H., and Ying, Z. (2011). Restricted one way analysis of variance using the empirical likelihood ratio test., Journal of Multivariate Analysis, 102(3):629–640.

Supplemental materials

  • Supplement to “Empirical likelihood based tests for stochastic ordering under right censorship”. R programs implementing the procedures developed in this article are available online. Supplementary tables with simulation results under the setup of proportional hazards are also provided.