Electronic Journal of Statistics

Palindromic Bernoulli distributions

Giovanni M. Marchetti and Nanny Wermuth

Full-text: Open access

Abstract

We introduce and study a subclass of joint Bernoulli distributions which has the palindromic property. For such distributions the vector of joint probabilities is unchanged when the order of the elements is reversed. We prove for binary variables that the palindromic property is equivalent to zero constraints on all odd-order interaction parameters, be it in parameterizations which are log-linear, linear or multivariate logistic. In particular, we derive the one-to-one parametric transformations for these three types of model specifications and give simple closed forms of maximum likelihood estimates. Several special cases are discussed and a case study is described.

Article information

Source
Electron. J. Statist., Volume 10, Number 2 (2016), 2435-2460.

Dates
Received: November 2015
First available in Project Euclid: 7 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1473276076

Digital Object Identifier
doi:10.1214/16-EJS1175

Mathematical Reviews number (MathSciNet)
MR3545465

Zentralblatt MATH identifier
1351.62046

Subjects
Primary: 62E10: Characterization and structure theory
Secondary: 62H17: Contingency tables 62H20: Measures of association (correlation, canonical correlation, etc.)

Keywords
Central symmetry linear in probability models log-linear models multivariate logistic models median-dichotomization orthant probabilities odd-order interactions

Citation

Marchetti, Giovanni M.; Wermuth, Nanny. Palindromic Bernoulli distributions. Electron. J. Statist. 10 (2016), no. 2, 2435--2460. doi:10.1214/16-EJS1175. https://projecteuclid.org/euclid.ejs/1473276076


Export citation

References

  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems., J. R. Stat. Soc. Ser. B. Stat. Methodol., 36, 192–236.
  • Baba, K., Shibata, R. & Sibuya M. (2004). Partial correlation and conditional correlation as measures of conditional independence, Aust. N. Z. J. Stat., 46(4), 657–664.
  • Barndorff-Nielsen, O. E. (1978)., Information and Exponential Families in Statistical Theory. New York: Wiley and Sons.
  • Bergsma, W. & Rudas, T. (2002). Marginal models for categorical data., Ann. Statist., 30(1). 140–159.
  • Bhapkar, V. P. & Darroch, J. N. (1990). Marginal symmetry and quasi symmetry of general order., J. Multivariate Anal., 34, 173–184.
  • Birch, M. W. (1963). Maximum likelihood in three-way contingency tables., J. R. Stat. Soc. Ser. B. Stat. Methodol., 25, 220–233.
  • Blomqvist, N. (1950). On a measure of dependence between two random variables., Ann. Math. Statist. 21, 593–600.
  • Cox, D. R. & Wermuth, N. (1992). Response models for mixed binary and quantitative variables., Biometrika 79, 441–461.
  • Cox, D. R. & Wermuth, N. (1994). Tests of linearity, multivariate normality and the adequacy of linear scores., J. R. Stat. Soc. Ser. C. Appl. Stat., 43, 347–355.
  • Cox, D. R. & Wermuth, N. (1994). A note on the quadratic exponential binary distribution., Biometrika, 81, 403–408.
  • Darroch, J. N., Lauritzen S. L. & Speed, T. P (1980). Markov fields and log-linear interaction models for contingency tables., Ann. Statist., 8(3), 522-539.
  • Darroch, J. N., & Speed, T. P (1983). Additive and multiplicative models and interactions., Ann. Statist. (11), 724–738.
  • Edwards, A. W. F. (1963). The measure of association in a 2 $\times$ 2 table., J. Roy. Statist. Soc. Ser. A, 126, 109–114.
  • Edwards, D. (2000)., Introduction to graphical modelling. New York: Springer.
  • Fallat, S., Lauritzen, S., Sadeghi K., Uhler, C., Wermuth, N. & Zwiernik P. (2016). Total positivity in Markov structures. To appear in, Ann. Statist., also on arXiv:1510.01290.
  • Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics., Philos. Trans. Roy. Soc. London Ser. A, 222, 309–368.
  • Glonek, G. F. V. & McCullagh, P. (1995). Multivariate Logistic Models., J. R. Stat. Soc. Ser. B. Stat. Methodol., 57, 533–546.
  • Haberman, S. J. (1973). Log-linear models for frequency data: sufficient statistics and likelihood equations., Ann. Statist., 1, 617–632.
  • Lněnička, R. & Matúš, F. (2007). On Gaussian conditional independence structures, Kybernetika, 43(3), 327–342.
  • Loh, P. & Wainwright, M. J. (2013). Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses., Ann. Statist., 41, 3022–3049.
  • Lupparelli M., Marchetti, G. M. & Bergsma, W. P. (2009). Parameterization and fitting of discrete bi-directed graph models., Scand. J. Stat., 36, 559—576.
  • Kauermann, G. (1997). A note on multivariate logistic models for contingency tables., Aust. J. Stat., 39, 261–276.
  • Marchetti, G. M. & Wermuth, N. (2009) Matrix representations and independencies in directed acyclic graphs., Ann. Statist., 37(2), 961–978.
  • Olkin, I. and Pratt, J.W. (1958). Unbiased estimation of certain correlation coefficients., Ann. Math. Statist., 29, 201–211.
  • Qaqish, B. F. & Ivanova, A. (2006). Multivariate logistic models., Biometrika, 93, 1011–1017.
  • Sadeghi, K. & Lauritzen, S.L. (2014) Markov properties for mixed graphs., Bernoulli, 20(2), 676–696.
  • San Martin, E. & Mouchart, M. & Rolin, J. (2005). Ignorable common information, null sets and Basu’s first theorem., Sankhyā, 67, 674–698.
  • Serfling, R. J. (2006). Multivariate symmetry and asymmetry. In:ww Kotz, S., Balakrishnan, N, Read,C. B. & Vidakovic, B.(eds.), Encyc. Statist. Sciences, 2nd ed. 8, 5538–5345.
  • Sheppard, W. F. (1898). On the geometrical treatment of the ‘normal curve’ of statistics, with special reference to correlation and to the theory of error., Proc. Roy. Soc. London, 62, 171–173.
  • Simpson, E. H. (1951). The Interpretation of interaction in contingency tables., J. R. Stat. Soc. Ser. B. Stat. Methodol. 13(2), 238–241.
  • Spirtes, P., Glymour, C. N. & Scheines, R. (2000)., Causation, prediction, and search MIT press, Cambridge, Massachusetts.
  • Streitberg, B. (1990). Lancaster interactions revisited., Ann. Statist. 18, 1878–1885.
  • Sundberg, R. (1975). Some results about decomposable (or Markov-type) models for multidimensional contingency tables: distribution of marginals and partitioning of tests., Scand. J. Stat., 2, 71–79.
  • Wermuth, N. (1987). Parametric collapsibility and the lack of moderating effects in contingency tables with a dichotomous response variable., J. R. Stat. Soc. Ser. B. Stat. Methodol, 49, 353–364.
  • Wermuth, N. (1989). Moderating effects in multivariate normal distributions., Methodika, III, 74–93.
  • Wermuth, N. (2012). Traceable regressions., Int. Statist. Review, 80, 415–438.
  • Wermuth, N. (2015). Graphical Markov models, unifying results and their interpretation. In: (Balakrishnan, N. et al., eds.), Wiley Statsref: Statistics Reference Online; also on arXiv:1505.02456.
  • Wermuth, N. & Cox, D. R. (1992). On the relation between interactions obtained with alternative codings of discrete variables., Methodika VI, 76–85.
  • Wermuth, N. & Cox, D.R. (1998). Statistical dependence and independence In: P. Armitage, P. and Colton, T. (eds.), Encyclopedia of Biostatistics, New York: Wiley, 4260–4264.
  • Wermuth, N. & Marchetti, G. M. (2014). Star graphs induce tetrad correlations for Gaussian as well as for binary distributions., Electron. J. Stat. 8, 253–273.
  • Wermuth, N., Marchetti, G. M. & Cox, D. R. (2009). Triangular systems for symmetric binary variables., Electron. J. Stat., 3, 932–955.
  • Wermuth, N., Marchetti, G. M. & Zwiernik, P. (2014). Binary distributions of concentric rings., J. Multivariate Anal., 130, 252–260; also on arXiv:1311.5655.
  • Wermuth, N. & Sadeghi, K. (2012). Sequences of regressions and their independences. Invited paper with discussion, TEST, 21, 215–252; also on arXiv:1103.2523.
  • Xie, X., Ma, Z. & Geng, Z. (2008). Some association measures and their collapsibility., Statist. Sinica 18, 1165–1183.