Electronic Journal of Statistics
- Electron. J. Statist.
- Volume 9, Number 2 (2015), 2130-2169.
The dynamic chain event graph
Lorna M. Barclay, Rodrigo A. Collazo, Jim Q. Smith, Peter A. Thwaites, and Ann E. Nicholson
Full-text: Open access
Abstract
In this paper we develop a formal dynamic version of Chain Event Graphs (CEGs), a particularly expressive family of discrete graphical models. We demonstrate how this class links to semi-Markov models and provides a convenient generalization of the Dynamic Bayesian Network (DBN). In particular we develop a repeating time-slice Dynamic CEG providing a useful and simpler model in this family. We demonstrate how the Dynamic CEG’s graphical formulation exhibits asymmetric conditional independence statements and also how each model can be estimated in a closed form enabling fast model search over the class. The expressive power of this model class together with its estimation is illustrated throughout by a variety of examples that include the risk of childhood hospitalization and the efficacy of a flu vaccine.
Article information
Source
Electron. J. Statist., Volume 9, Number 2 (2015), 2130-2169.
Dates
Received: September 2014
First available in Project Euclid: 21 September 2015
Permanent link to this document
https://projecteuclid.org/euclid.ejs/1442840119
Digital Object Identifier
doi:10.1214/15-EJS1068
Mathematical Reviews number (MathSciNet)
MR3400535
Zentralblatt MATH identifier
1336.62205
Keywords
Chain Event Graphs Markov processes probabilistic graphical models dynamic Bayesian networks
Citation
Barclay, Lorna M.; Collazo, Rodrigo A.; Smith, Jim Q.; Thwaites, Peter A.; Nicholson, Ann E. The dynamic chain event graph. Electron. J. Statist. 9 (2015), no. 2, 2130--2169. doi:10.1214/15-EJS1068. https://projecteuclid.org/euclid.ejs/1442840119
References
- Barbu, V. S. and Limnios, N., Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis, volume 191. Springer, 2008.
- Barclay, L. M., Hutton, J. L., and Smith, J. Q. Refining a Bayesian Network using a Chain Event Graph., International Journal of Approximate Reasoning, 54 (9): 1300–1309, 2013.Mathematical Reviews (MathSciNet): MR3115418
Digital Object Identifier: doi:10.1016/j.ijar.2013.05.006 - Barclay, L. M., Hutton, J. L., and Smith, J. Q. Chain Event Graphs for Informed Missingness., Bayesian Analysis, 9 (1): 53–76, 2014.Mathematical Reviews (MathSciNet): MR3188299
Digital Object Identifier: doi:10.1214/13-BA843
Project Euclid: euclid.ba/1393251770 - Bilmes, J. A. Dynamic Bayesian Multinets. In, Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pages 38–45. Morgan Kaufmann Publishers Inc., 2000.
- Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. Context-specific independence in Bayesian Networks. In, Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence, 1996, pages 115–123. Morgan Kaufmann Publishers Inc., 1996.Mathematical Reviews (MathSciNet): MR1617129
- Collazo, R. A. and Smith, J. Q. A new family of non-local priors for chain event graph model selection. CRiSM Research Report 15-02, 2015.
- Cowell, R. G. and Smith, J. Q. Causal discovery through MAP selection of stratified chain event graphs., Electronic Journal of Statistics, 8 (1): 965–997, 2014.Mathematical Reviews (MathSciNet): MR3263109
Zentralblatt MATH: 06322944
Digital Object Identifier: doi:10.1214/14-EJS917
Project Euclid: euclid.ejs/1406638931 - Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J., Probabilistic Networks and Expert Systems. Springer Verlag, New York, USA, 2007.Mathematical Reviews (MathSciNet): MR1697175
- Dawid, A. P. Conditional independence. In S. Kotz, C. B. Read, and D. L. Banks, editors, Encyclopedia of Statistical Science, volume 2, pages 146–153. Wiley-Interscience, update edition, 1998.Mathematical Reviews (MathSciNet): MR1605063
- Dean, T. and Kanazawa, K. A model for reasoning about persistence and causation., Computational Intelligence, 5 (3): 142–150, 1989.
- Didelez, V. Graphical models for marked point processes based on local independence., Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70 (1): 245–264, 2008.Mathematical Reviews (MathSciNet): MR2412641
Zentralblatt MATH: 05563353
Digital Object Identifier: doi:10.1111/j.1467-9868.2007.00634.x - Fergusson, D. M., Horwood, L. J., and Shannon, F. T. Social and family factors in childhood hospital admission., Journal of Epidemiology and Community Health, 40 (1): 50, 1986.
- Freeman, G. and Smith, J. Q. Bayesian MAP model selection of Chain Event Graphs., Journal of Multivariate Analysis, 102 (7): 1152–1165, 2011a.Mathematical Reviews (MathSciNet): MR2805655
Zentralblatt MATH: 1216.62039
Digital Object Identifier: doi:10.1016/j.jmva.2011.03.008 - Freeman, G. and Smith, J. Q. Dynamic staged trees for discrete multivariate time series: forecasting, model selection and causal analysis., Bayesian Analysis, 6 (2): 279–305, 2011b.Mathematical Reviews (MathSciNet): MR2806245
Digital Object Identifier: doi:10.1214/11-BA610
Project Euclid: euclid.ba/1339612047 - French, S. and Insua, D. Rios., Statistical Decision Theory: Kendall’s Library of Statistics 9. Wiley, 2010.
- Friedman, N. and Goldszmidt, M.. Learning Bayesian Networks with local structure. In M. I. Jordan, editor, Learning in Graphical Models, pages 421–460. MIT Press, 1998.
- Geiger, D. and Heckerman, D. Knowledge representation and inference in similarity networks and Bayesian multinets., Artificial Intelligence, 82 (1): 45–74, 1996. Mathematical Reviews (MathSciNet): MR1391056
Digital Object Identifier: doi:10.1016/0004-3702(95)00014-3 - Gottard, A. On the inclusion of bivariate marked point processes in graphical models., Metrika, 66 (3): 269–287, 2007.Mathematical Reviews (MathSciNet): MR2336480
Digital Object Identifier: doi:10.1007/s00184-006-0110-7 - Heckerman, D. A tutorial on learning with Bayesian Networks., Innovations in Bayesian Networks, pages 33–82, 2008.
- Johnson, N. L., Kotz, S., and Balakrishnan, N., Continuous Univariate Distributions. Number v. 1 in Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley & Sons, 1995.
- Kjærulff, U. A computational scheme for reasoning in dynamic probabilistic networks. In, Proceedings of the Eighth International Conference on Uncertainty in Artificial Intelligence, UAI’92, pages 121–129, 1992.
- Korb, K. B. and Nicholson, A. E., Bayesian Artificial Intelligence, volume 1. CRC Press, 2004.Mathematical Reviews (MathSciNet): MR2130189
- Kulkarni, V. G., Modeling and analysis of stochastic systems, volume 36. CRC Press, 1995.Mathematical Reviews (MathSciNet): MR1357414
- Medhi, J., Stochastic Processes. New Age International, 1994.Mathematical Reviews (MathSciNet): MR1287161
- Murphy, K. P., Machine Learning: a Probabilistic Perspective. The MIT Press, 2012.Zentralblatt MATH: 1295.68003
- Neapolitan, R. E., Learning Bayesian Networks. Pearson Prentice Hall Upper Saddle River, 2004.
- Nicholson, A. E. Monitoring Discrete Environments Using Dynamic Belief Networks. PhD thesis, Department of Engineering Sciences, Oxford, 1992.
- Nodelman, U., Shelton, C. R., and Koller, D. Continuous time Bayesian networks. In, Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI), pages 378–387, 2002.
- Nodelman, U., Shelton, C. R., and Koller, D. Learning continuous time Bayesian networks. In, Proceedings of the Nineteenth International Conference on Uncertainty in Artificial Intelligence, pages 451–458, 2003.
- Pearl, J., Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge, second edition, 2009.Mathematical Reviews (MathSciNet): MR2548166
- Riccomagno, E. and Smith, J. Q. The geometry of causal probability trees that are algebraically constrained., Optimal Design and Related Areas in Optimization and Statistics, pages 133–154, 2009.Mathematical Reviews (MathSciNet): MR2513349
Zentralblatt MATH: 1192.62007
Digital Object Identifier: doi:10.1007/978-0-387-79936-0_6 - Rubio, F., Flores, M. J., Gómez, J. M., and Nicholson A. Dynamic Bayesian Networks for semantic localization in robotics. In, XV Workshop of Physical Agents: Book of Proceedings, WAF 2014, June 12th and 13th, 2014 León, Spain, pages 144–155, 2014.
- Smith, J. Q., Decision Analysis – Principles and Practice. Cambridge University Press, 2010.Mathematical Reviews (MathSciNet): MR2828346
- Smith, J. Q. and Anderson, P. E. Conditional independence and Chain Event Graphs., Artificial Intelligence, 172 (1): 42–68, 2008.Mathematical Reviews (MathSciNet): MR2388535
Zentralblatt MATH: 1182.68303
Digital Object Identifier: doi:10.1016/j.artint.2007.05.004 - Thwaites, P. A. Causal identifiability via Chain Event Graphs., Artificial Intelligence, 195: 291–315, 2013.Mathematical Reviews (MathSciNet): MR3024205
Zentralblatt MATH: 1270.68300
Digital Object Identifier: doi:10.1016/j.artint.2012.09.003 - Thwaites, P. A. and Smith, J. Q. Evaluating causal effects using Chain Event Graphs. In, Proceedings of PGM, 2006, pages 293–300, 2006a.
- Thwaites, P. A. and Smith, J. Q. Non-symmetric models, Chain Event Graphs and propagation. In, Proceedings of IPMU, 2006, pages 2339–2347, 2006b.
- Thwaites, P. A. and Smith, J. Q. Separation theorems for Chain Event Graphs., CRiSM Research Report 11-09, 2011.
- Thwaites, P. A., Smith, J. Q., and Cowell, R. G. Propagation using Chain Event Graphs. In, Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08), pages 546–553. AUAI Press, 2008.
- Thwaites, P. A., Smith, J. Q., and Riccomagno, E. Causal analysis with Chain Event Graphs., Artificial Intelligence, 174 (12): 889–909, 2010.Mathematical Reviews (MathSciNet): MR2722255
Zentralblatt MATH: 1205.68431
Digital Object Identifier: doi:10.1016/j.artint.2010.05.004
The Institute of Mathematical Statistics and the Bernoulli Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A New Family of Non-Local Priors for Chain Event Graph Model Selection
Collazo, Rodrigo A. and Smith, Jim Q., Bayesian Analysis, 2016 - Design of vaccine trials during outbreaks with and without a delayed vaccination comparator
Dean, Natalie E., Halloran, M. Elizabeth, and Longini, Ira M., Annals of Applied Statistics, 2018 - Chain Event Graphs for Informed Missingness
Barclay, Lorna M., Hutton, Jane L., and Smith, Jim Q., Bayesian Analysis, 2014
- A New Family of Non-Local Priors for Chain Event Graph Model Selection
Collazo, Rodrigo A. and Smith, Jim Q., Bayesian Analysis, 2016 - Design of vaccine trials during outbreaks with and without a delayed vaccination comparator
Dean, Natalie E., Halloran, M. Elizabeth, and Longini, Ira M., Annals of Applied Statistics, 2018 - Chain Event Graphs for Informed Missingness
Barclay, Lorna M., Hutton, Jane L., and Smith, Jim Q., Bayesian Analysis, 2014 - Proportional hazards models with continuous marks
Sun, Yanqing, Gilbert, Peter B., and McKeague, Ian W., Annals of Statistics, 2009 - Stratified exponential families: Graphical models and model
selection
Geiger, Dan, Heckerman, David, King, Henry, and Meek, Christopher, Annals of Statistics, 2001 - Flexible covariance estimation in graphical Gaussian models
Rajaratnam, Bala, Massam, Hélène, and Carvalho, Carlos M., Annals of Statistics, 2008 - Searching Multiregression Dynamic Models of Resting-State fMRI Networks Using Integer Programming
Costa, Lilia, Smith, Jim, Nichols, Thomas, Cussens, James, Duff, Eugene P., and Makin, Tamar R., Bayesian Analysis, 2015 - Markov equivalence of marginalized local independence graphs
Mogensen, Søren Wengel and Hansen, Niels Richard, Annals of Statistics, 2020 - A Bayesian framework for estimating vaccine
efficacy per infectious contact
Yang, Yang, Gilbert, Peter, Longini, Jr., Ira M., and Halloran, M. Elizabeth, Annals of Applied Statistics, 2008 - Bayesian inference for multiple Gaussian graphical models with application to metabolic association networks
Tan, Linda S. L., Jasra, Ajay, De Iorio, Maria, and Ebbels, Timothy M. D., Annals of Applied Statistics, 2017
