Electronic Journal of Statistics

Optimal rate of direct estimators in systems of ordinary differential equations linear in functions of the parameters

Itai Dattner and Chris A. J. Klaassen

Full-text: Open access

Abstract

Many processes in biology, chemistry, physics, medicine, and engineering are modeled by a system of differential equations. Such a system is usually characterized via unknown parameters and estimating their ‘true’ value is thus required. In this paper we focus on the quite common systems for which the derivatives of the states may be written as sums of products of a function of the states and a function of the parameters.

For such a system linear in functions of the unknown parameters we present a necessary and sufficient condition for identifiability of the parameters. We develop an estimation approach that bypasses the heavy computational burden of numerical integration and avoids the estimation of system states derivatives, drawbacks from which many classic estimation methods suffer. We also suggest an experimental design for which smoothing can be circumvented. The optimal rate of the proposed estimators, i.e., their $\sqrt{n}$-consistency, is proved and simulation results illustrate their excellent finite sample performance and compare it to other estimation approaches.

Article information

Source
Electron. J. Statist., Volume 9, Number 2 (2015), 1939-1973.

Dates
Received: January 2015
First available in Project Euclid: 27 August 2015

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1440680332

Digital Object Identifier
doi:10.1214/15-EJS1053

Mathematical Reviews number (MathSciNet)
MR3391125

Zentralblatt MATH identifier
1327.62120

Subjects
Primary: 62F12: Asymptotic properties of estimators 62G05: Estimation 62G08: Nonparametric regression 62G20: Asymptotic properties

Keywords
Local polynomials Lotka-Volterra nonparametric regression ordinary differential equation plug-in estimators

Citation

Dattner, Itai; Klaassen, Chris A. J. Optimal rate of direct estimators in systems of ordinary differential equations linear in functions of the parameters. Electron. J. Statist. 9 (2015), no. 2, 1939--1973. doi:10.1214/15-EJS1053. https://projecteuclid.org/euclid.ejs/1440680332


Export citation

References

  • [1] Arnold, V. (1977)., Ordinary Differential Equations. The MIT Press, Cambridge.
  • [2] Bellman, R. and Åström, K. (1970). On structural identifiability., Mathematical Biosciences 7(3), 329–339.
  • [3] Bellman, R. and Roth, R. S. (1971). The use of splines with unknown end points in the identification of systems., Journal of Mathematical Analysis and Applications 34(1), 26–33.
  • [4] Bickel, P. J. and Ritov, Y. (2003). Nonparametric estimators which can be “plugged-in”., The Annals of Statistics 31(4), 1033–1053.
  • [5] Brewer, D., Barenco, M., Callard, R., Hubank, M., and Stark, J. (2008). Fitting ordinary differential equations to short time course data., Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366(1865), 519–544.
  • [6] Brunel, N. J., Clairon, Q., and d’Alché Buc, F. (2014). Parametric estimation of ordinary differential equations with orthogonality conditions., Journal of the American Statistical Association 109(505), 173–185.
  • [7] Brunel, N. J. B. (2008). Parameter estimation of ode’s via nonparametric estimators., Electronic Journal of Statistics 2, 1242–1267.
  • [8] Campbell, D. and Steele, R. J. (2012). Smooth functional tempering for nonlinear differential equation models., Statistics and Computing 22(2), 429–443.
  • [9] Cheng, M.-Y., Fan, J., and Marron, J. S. (1997). On automatic boundary corrections., The Annals of Statistics 25(4), 1691–1708.
  • [10] Chou, I.-C. and Voit, E. O. (2009). Recent developments in parameter estimation and structure identification of biochemical and genomic systems., Mathematical biosciences 219(2), 57.
  • [11] Cobelli, C., Distefano, J. J., et al. (1980). Parameter and structural identifiability concepts and ambiguities: A critical review and analysis., American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 239(1), R7–R24.
  • [12] Dattner, I. (2015). A model-based initial guess for estimating parameters in systems of ordinary differential equations., Biometrics, doi: 10.1111/biom.12348.
  • [13] Dattner, I. and Gugushvili, S. (2015). Accelerated least squares estimation for systems of ordinary differential equations., arXiv:1503.07973.
  • [14] de Bazelaire, C., Siauve, N., Fournier, L., Frouin, F., Robert, P., Clement, O., de Kerviler, E., and Cuenod, C. A. (2005). Comprehensive model for simultaneous mri determination of perfusion and permeability using a blood-pool agent in rats rhabdomyosarcoma., European radiology 15(12), 2497–2505.
  • [15] Edelstein-Keshet, L. (2005)., Mathematical Models in Biology. Classics in Applied Mathematics, Volume 46. Society for Industrial and Applied Mathematics.
  • [16] Fang, Y., Wu, H., and Zhu, L.-X. (2011). A two-stage estimation method for random coefficient differential equation models with application to longitudinal hiv dynamic data., Statistica Sinica 21(3), 1145.
  • [17] FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane., Biophysical Journal 1(6), 445–466.
  • [18] Font, J. and Fabregat, A. (1997). Testing a predictor-corrector integral method for estimating parameters in complex kinetic systems described by ordinary differential equations., Computers & Chemical Engineering 21(7), 719–731.
  • [19] Goldstein, L. and Messer, K. (1992). Optimal plug-in estimators for nonparametric functional estimation., The Annals of Statistics 20, 1306–1328.
  • [20] Gugushvili, S. and Klaassen, C. A. J. (2012). $\sqrtn$-consistent parameter estimation for systems of ordinary differential equations: bypassing numerical integration via smoothing., Bernoulli 18, 1061–1098.
  • [21] Gugushvili, S. and Spreij, P. (2012). Parametric inference for stochastic differential equations: A smooth and match approach., Latin American Journal of Probability and Mathematical Statistics 9(2), 609–635.
  • [22] Hall, P. and Ma, Y. (2013). Quick and easy one-step parameter estimation in differential equations., Journal of the Royal Statistical Society: Series B (Statistical Methodology).
  • [23] Härdle, W. and Bowman, A. W. (1988). Bootstrapping in nonparametric regression: Local adaptive smoothing and confidence bands., Journal of the American Statistical Association 83(401), 102–110.
  • [24] Haynsworth, E. V. (1968). On the schur complement. Technical report, DTIC, Document.
  • [25] He, D., Ionides, E. L., and King, A. A. (2010). Plug-and-play inference for disease dynamics: Measles in large and small populations as a case study., Journal of the Royal Society Interface 7(43), 271–283.
  • [26] Himmelblau, D., Jones, C., and Bischoff, K. (1967). Determination of rate constants for complex kinetics models., Industrial & Engineering Chemistry Fundamentals 6(4), 539–543.
  • [27] Hockin, M. F., Jones, K. C., Everse, S. J., and Mann, K. G. (2002). A model for the stoichiometric regulation of blood coagulation., Journal of Biological Chemistry 277(21), 18322–18333.
  • [28] Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve., The Journal of Physiology 117(4), 500.
  • [29] Hooker, G., Ellner, S. P., Roditi, L. D. V., and Earn, D. J. (2011). Parameterizing state–space models for infectious disease dynamics by generalized profiling: Measles in ontario., Journal of The Royal Society Interface 8(60), 961–974.
  • [30] Liang, H. and Wu, H. (2008). Parameter estimation for differential equation models using a framework of measurement error in regression models., Journal of the American Statistical Association 103(484), 1570–1583.
  • [31] Ljung, L. and Glad, T. (1994). On global identifiability for arbitrary model parametrizations., Automatica 30(2), 265–276.
  • [32] Miao, H., Dykes, C., Demeter, L. M., Cavenaugh, J., Park, S. Y., Perelson, A. S., and Wu, H. (2008). Modeling and estimation of kinetic parameters and replicative fitness of hiv-1 from flow-cytometry-based growth competition experiments., Bulletin of Mathematical Biology 70(6), 1749–1771.
  • [33] Miao, H., Dykes, C., Demeter, L. M., and Wu, H. (2009). Differential equation modeling of hiv viral fitness experiments: Model identification, model selection, and multimodel inference., Biometrics 65(1), 292–300.
  • [34] Miao, H., Xia, X., Perelson, A. S., and Wu, H. (2011). On identifiability of nonlinear ode models and applications in viral dynamics., SIAM Review 53(1), 3–39.
  • [35] Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon., Proceedings of the IRE 50(10), 2061–2070.
  • [36] Nowak, M. and May, R. M. (2000)., Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press on Demand.
  • [37] Qi, X. and Zhao, H. (2010). Asymptotic efficiency and finite-sample properties of the generalized profiling estimation of parameters in ordinary differential equations., The Annals of Statistics 38(1), 435–481.
  • [38] Ramsay, J. O., Hooker, G., Campbell, D., and Cao, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach., Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69(5), 741–796.
  • [39] Tank, D., Regehr, W., and Delaney, K. (1995). A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement., The Journal of neuroscience 15(12), 7940–7952.
  • [40] Tjoa, I. B. and Biegler, L. T. (1991). Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems., Industrial & Engineering Chemistry Research 30(2), 376– 385.
  • [41] Tsybakov, A. B. (2009)., Introduction to Nonparametric Estimation. Springer.
  • [42] Vajda, S., Valko, P., and Yermakova, A. (1986). A direct-indirect procedure for estimation of kinetic parameters., Computers & Chemical Engineering 10(1), 49–58.
  • [43] Varah, J. (1982). A spline least squares method for numerical parameter estimation in differential equations., SIAM Journal on Scientific and Statistical Computing 3(1), 28–46.
  • [44] Voit, E. O. (2000)., Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press.
  • [45] Voit, E. O. and Almeida, J. (2004). Decoupling dynamical systems for pathway identification from metabolic profiles., Bioinformatics 20(11), 1670–1681.
  • [46] Vujačić, I., Dattner, I., González, J., and Wit, E. (2014). Time-course window estimator for ordinary differential equations linear in the parameters., Statistics and Computing, doi: 10.1007/s11222-014-9486-9.
  • [47] Wu, H., Zhu, H., Miao, H., and Perelson, A. S. (2008). Parameter identifiability and estimation of hiv/aids dynamic models., Bulletin of Mathematical Biology 70(3), 785–799.
  • [48] Xia, X. and Moog, C. (2003). Identifiability of nonlinear systems with application to hiv/aids models., IEEE Transactions on Automatic Control 48(2), 330–336.
  • [49] Xue, H., Miao, H., and Wu, H. (2010). Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error., The Annals of Statistics 38(4), 2351–2387.
  • [50] Xun, X., Cao, J., Mallick, B., Maity, A., and Carroll, R. J. (2013). Parameter estimation of partial differential equation models., Journal of the American Statistical Association 108(503), 1009–1020.
  • [51] Yermakova, A., Vajda, S., and Valko, P. (1982). Direct integral method via spline-approximation for estimating rate constants., Applied Catalysis 2(3), 139–154.