Electronic Journal of Statistics
- Electron. J. Statist.
- Volume 9, Number 2 (2015), 1939-1973.
Optimal rate of direct estimators in systems of ordinary differential equations linear in functions of the parameters
Itai Dattner and Chris A. J. Klaassen
Full-text: Open access
Abstract
Many processes in biology, chemistry, physics, medicine, and engineering are modeled by a system of differential equations. Such a system is usually characterized via unknown parameters and estimating their ‘true’ value is thus required. In this paper we focus on the quite common systems for which the derivatives of the states may be written as sums of products of a function of the states and a function of the parameters.
For such a system linear in functions of the unknown parameters we present a necessary and sufficient condition for identifiability of the parameters. We develop an estimation approach that bypasses the heavy computational burden of numerical integration and avoids the estimation of system states derivatives, drawbacks from which many classic estimation methods suffer. We also suggest an experimental design for which smoothing can be circumvented. The optimal rate of the proposed estimators, i.e., their $\sqrt{n}$-consistency, is proved and simulation results illustrate their excellent finite sample performance and compare it to other estimation approaches.
Article information
Source
Electron. J. Statist., Volume 9, Number 2 (2015), 1939-1973.
Dates
Received: January 2015
First available in Project Euclid: 27 August 2015
Permanent link to this document
https://projecteuclid.org/euclid.ejs/1440680332
Digital Object Identifier
doi:10.1214/15-EJS1053
Mathematical Reviews number (MathSciNet)
MR3391125
Zentralblatt MATH identifier
1327.62120
Subjects
Primary: 62F12: Asymptotic properties of estimators 62G05: Estimation 62G08: Nonparametric regression 62G20: Asymptotic properties
Keywords
Local polynomials Lotka-Volterra nonparametric regression ordinary differential equation plug-in estimators
Citation
Dattner, Itai; Klaassen, Chris A. J. Optimal rate of direct estimators in systems of ordinary differential equations linear in functions of the parameters. Electron. J. Statist. 9 (2015), no. 2, 1939--1973. doi:10.1214/15-EJS1053. https://projecteuclid.org/euclid.ejs/1440680332
References
- [1] Arnold, V. (1977)., Ordinary Differential Equations. The MIT Press, Cambridge.Mathematical Reviews (MathSciNet): MR361233
- [2] Bellman, R. and Åström, K. (1970). On structural identifiability., Mathematical Biosciences 7(3), 329–339.
- [3] Bellman, R. and Roth, R. S. (1971). The use of splines with unknown end points in the identification of systems., Journal of Mathematical Analysis and Applications 34(1), 26–33.Mathematical Reviews (MathSciNet): MR277269
Zentralblatt MATH: 0217.11601
Digital Object Identifier: doi:10.1016/0022-247X(71)90154-5 - [4] Bickel, P. J. and Ritov, Y. (2003). Nonparametric estimators which can be “plugged-in”., The Annals of Statistics 31(4), 1033–1053.Mathematical Reviews (MathSciNet): MR2001641
Digital Object Identifier: doi:10.1214/aos/1059655904
Project Euclid: euclid.aos/1059655904 - [5] Brewer, D., Barenco, M., Callard, R., Hubank, M., and Stark, J. (2008). Fitting ordinary differential equations to short time course data., Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366(1865), 519–544.Mathematical Reviews (MathSciNet): MR2377665
Zentralblatt MATH: 1153.37444
Digital Object Identifier: doi:10.1098/rsta.2007.2108 - [6] Brunel, N. J., Clairon, Q., and d’Alché Buc, F. (2014). Parametric estimation of ordinary differential equations with orthogonality conditions., Journal of the American Statistical Association 109(505), 173–185.Mathematical Reviews (MathSciNet): MR3180555
Digital Object Identifier: doi:10.1080/01621459.2013.841583 - [7] Brunel, N. J. B. (2008). Parameter estimation of ode’s via nonparametric estimators., Electronic Journal of Statistics 2, 1242–1267.Mathematical Reviews (MathSciNet): MR2471285
Zentralblatt MATH: 06165733
Digital Object Identifier: doi:10.1214/07-EJS132
Project Euclid: euclid.ejs/1229975381 - [8] Campbell, D. and Steele, R. J. (2012). Smooth functional tempering for nonlinear differential equation models., Statistics and Computing 22(2), 429–443.Mathematical Reviews (MathSciNet): MR2865027
Digital Object Identifier: doi:10.1007/s11222-011-9234-3 - [9] Cheng, M.-Y., Fan, J., and Marron, J. S. (1997). On automatic boundary corrections., The Annals of Statistics 25(4), 1691–1708.Mathematical Reviews (MathSciNet): MR1463570
Zentralblatt MATH: 0890.62026
Digital Object Identifier: doi:10.1214/aos/1069362735
Project Euclid: euclid.aos/1031594737 - [10] Chou, I.-C. and Voit, E. O. (2009). Recent developments in parameter estimation and structure identification of biochemical and genomic systems., Mathematical biosciences 219(2), 57.Mathematical Reviews (MathSciNet): MR2537454
Zentralblatt MATH: 1168.92019
Digital Object Identifier: doi:10.1016/j.mbs.2009.03.002 - [11] Cobelli, C., Distefano, J. J., et al. (1980). Parameter and structural identifiability concepts and ambiguities: A critical review and analysis., American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 239(1), R7–R24.
- [12] Dattner, I. (2015). A model-based initial guess for estimating parameters in systems of ordinary differential equations., Biometrics, doi: 10.1111/biom.12348.
- [13] Dattner, I. and Gugushvili, S. (2015). Accelerated least squares estimation for systems of ordinary differential equations., arXiv:1503.07973.
- [14] de Bazelaire, C., Siauve, N., Fournier, L., Frouin, F., Robert, P., Clement, O., de Kerviler, E., and Cuenod, C. A. (2005). Comprehensive model for simultaneous mri determination of perfusion and permeability using a blood-pool agent in rats rhabdomyosarcoma., European radiology 15(12), 2497–2505.
- [15] Edelstein-Keshet, L. (2005)., Mathematical Models in Biology. Classics in Applied Mathematics, Volume 46. Society for Industrial and Applied Mathematics.Mathematical Reviews (MathSciNet): MR2131632
- [16] Fang, Y., Wu, H., and Zhu, L.-X. (2011). A two-stage estimation method for random coefficient differential equation models with application to longitudinal hiv dynamic data., Statistica Sinica 21(3), 1145.Mathematical Reviews (MathSciNet): MR2827518
Zentralblatt MATH: 05961047
Digital Object Identifier: doi:10.5705/ss.2009.156 - [17] FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane., Biophysical Journal 1(6), 445–466.
- [18] Font, J. and Fabregat, A. (1997). Testing a predictor-corrector integral method for estimating parameters in complex kinetic systems described by ordinary differential equations., Computers & Chemical Engineering 21(7), 719–731.
- [19] Goldstein, L. and Messer, K. (1992). Optimal plug-in estimators for nonparametric functional estimation., The Annals of Statistics 20, 1306–1328.Mathematical Reviews (MathSciNet): MR1186251
Zentralblatt MATH: 0763.62023
Digital Object Identifier: doi:10.1214/aos/1176348770
Project Euclid: euclid.aos/1176348770 - [20] Gugushvili, S. and Klaassen, C. A. J. (2012). $\sqrtn$-consistent parameter estimation for systems of ordinary differential equations: bypassing numerical integration via smoothing., Bernoulli 18, 1061–1098.Mathematical Reviews (MathSciNet): MR2948913
Digital Object Identifier: doi:10.3150/11-BEJ362
Project Euclid: euclid.bj/1340887014 - [21] Gugushvili, S. and Spreij, P. (2012). Parametric inference for stochastic differential equations: A smooth and match approach., Latin American Journal of Probability and Mathematical Statistics 9(2), 609–635.
- [22] Hall, P. and Ma, Y. (2013). Quick and easy one-step parameter estimation in differential equations., Journal of the Royal Statistical Society: Series B (Statistical Methodology).
- [23] Härdle, W. and Bowman, A. W. (1988). Bootstrapping in nonparametric regression: Local adaptive smoothing and confidence bands., Journal of the American Statistical Association 83(401), 102–110.
- [24] Haynsworth, E. V. (1968). On the schur complement. Technical report, DTIC, Document.
- [25] He, D., Ionides, E. L., and King, A. A. (2010). Plug-and-play inference for disease dynamics: Measles in large and small populations as a case study., Journal of the Royal Society Interface 7(43), 271–283.
- [26] Himmelblau, D., Jones, C., and Bischoff, K. (1967). Determination of rate constants for complex kinetics models., Industrial & Engineering Chemistry Fundamentals 6(4), 539–543.
- [27] Hockin, M. F., Jones, K. C., Everse, S. J., and Mann, K. G. (2002). A model for the stoichiometric regulation of blood coagulation., Journal of Biological Chemistry 277(21), 18322–18333.
- [28] Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve., The Journal of Physiology 117(4), 500.
- [29] Hooker, G., Ellner, S. P., Roditi, L. D. V., and Earn, D. J. (2011). Parameterizing state–space models for infectious disease dynamics by generalized profiling: Measles in ontario., Journal of The Royal Society Interface 8(60), 961–974.
- [30] Liang, H. and Wu, H. (2008). Parameter estimation for differential equation models using a framework of measurement error in regression models., Journal of the American Statistical Association 103(484), 1570–1583.Mathematical Reviews (MathSciNet): MR2504205
Zentralblatt MATH: 1286.62039
Digital Object Identifier: doi:10.1198/016214508000000797 - [31] Ljung, L. and Glad, T. (1994). On global identifiability for arbitrary model parametrizations., Automatica 30(2), 265–276.Mathematical Reviews (MathSciNet): MR1261705
Digital Object Identifier: doi:10.1016/0005-1098(94)90029-9 - [32] Miao, H., Dykes, C., Demeter, L. M., Cavenaugh, J., Park, S. Y., Perelson, A. S., and Wu, H. (2008). Modeling and estimation of kinetic parameters and replicative fitness of hiv-1 from flow-cytometry-based growth competition experiments., Bulletin of Mathematical Biology 70(6), 1749–1771.Mathematical Reviews (MathSciNet): MR2430325
Zentralblatt MATH: 1166.92029
Digital Object Identifier: doi:10.1007/s11538-008-9323-4 - [33] Miao, H., Dykes, C., Demeter, L. M., and Wu, H. (2009). Differential equation modeling of hiv viral fitness experiments: Model identification, model selection, and multimodel inference., Biometrics 65(1), 292–300.Mathematical Reviews (MathSciNet): MR2665892
Digital Object Identifier: doi:10.1111/j.1541-0420.2008.01059.x - [34] Miao, H., Xia, X., Perelson, A. S., and Wu, H. (2011). On identifiability of nonlinear ode models and applications in viral dynamics., SIAM Review 53(1), 3–39.Mathematical Reviews (MathSciNet): MR2785878
Zentralblatt MATH: 1215.34015
Digital Object Identifier: doi:10.1137/090757009 - [35] Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon., Proceedings of the IRE 50(10), 2061–2070.
- [36] Nowak, M. and May, R. M. (2000)., Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press on Demand.
- [37] Qi, X. and Zhao, H. (2010). Asymptotic efficiency and finite-sample properties of the generalized profiling estimation of parameters in ordinary differential equations., The Annals of Statistics 38(1), 435–481.Mathematical Reviews (MathSciNet): MR2589327
Zentralblatt MATH: 1181.62156
Digital Object Identifier: doi:10.1214/09-AOS724
Project Euclid: euclid.aos/1262271620 - [38] Ramsay, J. O., Hooker, G., Campbell, D., and Cao, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach., Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69(5), 741–796.Mathematical Reviews (MathSciNet): MR2368570
Digital Object Identifier: doi:10.1111/j.1467-9868.2007.00610.x - [39] Tank, D., Regehr, W., and Delaney, K. (1995). A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement., The Journal of neuroscience 15(12), 7940–7952.
- [40] Tjoa, I. B. and Biegler, L. T. (1991). Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems., Industrial & Engineering Chemistry Research 30(2), 376– 385.
- [41] Tsybakov, A. B. (2009)., Introduction to Nonparametric Estimation. Springer.Mathematical Reviews (MathSciNet): MR2724359
- [42] Vajda, S., Valko, P., and Yermakova, A. (1986). A direct-indirect procedure for estimation of kinetic parameters., Computers & Chemical Engineering 10(1), 49–58.
- [43] Varah, J. (1982). A spline least squares method for numerical parameter estimation in differential equations., SIAM Journal on Scientific and Statistical Computing 3(1), 28–46.
- [44] Voit, E. O. (2000)., Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press.
- [45] Voit, E. O. and Almeida, J. (2004). Decoupling dynamical systems for pathway identification from metabolic profiles., Bioinformatics 20(11), 1670–1681.
- [46] Vujačić, I., Dattner, I., González, J., and Wit, E. (2014). Time-course window estimator for ordinary differential equations linear in the parameters., Statistics and Computing, doi: 10.1007/s11222-014-9486-9.
- [47] Wu, H., Zhu, H., Miao, H., and Perelson, A. S. (2008). Parameter identifiability and estimation of hiv/aids dynamic models., Bulletin of Mathematical Biology 70(3), 785–799.Mathematical Reviews (MathSciNet): MR2393024
Zentralblatt MATH: 1146.92021
Digital Object Identifier: doi:10.1007/s11538-007-9279-9 - [48] Xia, X. and Moog, C. (2003). Identifiability of nonlinear systems with application to hiv/aids models., IEEE Transactions on Automatic Control 48(2), 330–336.
- [49] Xue, H., Miao, H., and Wu, H. (2010). Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error., The Annals of Statistics 38(4), 2351–2387.Mathematical Reviews (MathSciNet): MR2676892
Zentralblatt MATH: 1203.62049
Digital Object Identifier: doi:10.1214/09-AOS784
Project Euclid: euclid.aos/1278861251 - [50] Xun, X., Cao, J., Mallick, B., Maity, A., and Carroll, R. J. (2013). Parameter estimation of partial differential equation models., Journal of the American Statistical Association 108(503), 1009–1020.Mathematical Reviews (MathSciNet): MR3174680
Zentralblatt MATH: 06224983
Digital Object Identifier: doi:10.1080/01621459.2013.794730 - [51] Yermakova, A., Vajda, S., and Valko, P. (1982). Direct integral method via spline-approximation for estimating rate constants., Applied Catalysis 2(3), 139–154.
The Institute of Mathematical Statistics and the Bernoulli Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Bayesian two-step estimation in differential equation models
Bhaumik, Prithwish and Ghosal, Subhashis, Electronic Journal of Statistics, 2015 - Towards the identification of ordinary differential equations from measurements
J Sprekels, K.-H. Hoffmann, , 1988 - Numerical Studies for Fractional Functional Differential Equations with Delay Based on BDF-Type Shifted Chebyshev Approximations
Pimenov, V. G. and Hendy, A. S., Abstract and Applied Analysis, 2015
- Bayesian two-step estimation in differential equation models
Bhaumik, Prithwish and Ghosal, Subhashis, Electronic Journal of Statistics, 2015 - Towards the identification of ordinary differential equations from measurements
J Sprekels, K.-H. Hoffmann, , 1988 - Numerical Studies for Fractional Functional Differential Equations with Delay Based on BDF-Type Shifted Chebyshev Approximations
Pimenov, V. G. and Hendy, A. S., Abstract and Applied Analysis, 2015 - Optimal sparse volatility matrix estimation for high-dimensional Itô processes with measurement errors
Tao, Minjing, Wang, Yazhen, and Zhou, Harrison H., Annals of Statistics, 2013 - A tracking approach to parameter estimation in linear ordinary differential equations
Brunel, Nicolas J. B. and Clairon, Quentin, Electronic Journal of Statistics, 2015 - Efficient Bayesian estimation and uncertainty quantification in ordinary differential equation models
Bhaumik, Prithwish and Ghosal, Subhashis, Bernoulli, 2017 - Loss function based ranking in two-stage, hierarchical models
Lin, Rongheng, Louis, Thomas A., Paddock, Susan M., and Ridgeway, Greg, Bayesian Analysis, 2006 - Parameter estimation of ODE’s via nonparametric estimators
Brunel, Nicolas J-B., Electronic Journal of Statistics, 2008 - Semiparametric estimation of a two-component mixture of linear regressions in which one component is known
Bordes, L., Kojadinovic, I., and Vandekerkhove, P., Electronic Journal of Statistics, 2013 - High-dimensional $A$-learning for optimal dynamic treatment regimes
Shi, Chengchun, Fan, Ailin, Song, Rui, and Lu, Wenbin, Annals of Statistics, 2018
