Electronic Journal of Statistics
- Electron. J. Statist.
- Volume 9, Number 1 (2015), 1243-1266.
Selecting massive variables using an iterated conditional modes/medians algorithm
Vitara Pungpapong, Min Zhang, and Dabao Zhang
Full-text: Open access
Abstract
Empirical Bayes methods are designed in selecting massive variables, which may be inter-connected following certain hierarchical structures, because of three attributes: taking prior information on model parameters, allowing data-driven hyperparameter values, and free of tuning parameters. We propose an iterated conditional modes/medians (ICM/M) algorithm to implement empirical Bayes selection of massive variables, while incorporating sparsity or more complicated a priori information. The iterative conditional modes are employed to obtain data-driven estimates of hyperparameters, and the iterative conditional medians are used to estimate the model coefficients and therefore enable the selection of massive variables. The ICM/M algorithm is computationally fast, and can easily extend the empirical Bayes thresholding, which is adaptive to parameter sparsity, to complex data. Empirical studies suggest competitive performance of the proposed method, even in the simple case of selecting massive regression predictors.
Article information
Source
Electron. J. Statist., Volume 9, Number 1 (2015), 1243-1266.
Dates
Received: September 2014
First available in Project Euclid: 11 June 2015
Permanent link to this document
https://projecteuclid.org/euclid.ejs/1433982945
Digital Object Identifier
doi:10.1214/15-EJS1034
Mathematical Reviews number (MathSciNet)
MR3355757
Zentralblatt MATH identifier
1327.62409
Subjects
Primary: 62J05: Linear regression
Secondary: 62C12: Empirical decision procedures; empirical Bayes procedures 62F07: Ranking and selection
Keywords
Empirical Bayes variable selection high dimensional data prior sparsity
Citation
Pungpapong, Vitara; Zhang, Min; Zhang, Dabao. Selecting massive variables using an iterated conditional modes/medians algorithm. Electron. J. Statist. 9 (2015), no. 1, 1243--1266. doi:10.1214/15-EJS1034. https://projecteuclid.org/euclid.ejs/1433982945
References
- Barbieri, M. M. and Berger, J. O. (2004). Optimal predictive model selection., The Annals of Statistics, 32:870–897.Mathematical Reviews (MathSciNet): MR2065192
Zentralblatt MATH: 1092.62033
Digital Object Identifier: doi:10.1214/009053604000000238
Project Euclid: euclid.aos/1085408489 - Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing., Journal of the Royal Statistical Society, Series B, 57:289–300.Mathematical Reviews (MathSciNet): MR1325392
- Besag, J. (1975). Statistical analysis of non-lattice data., Journal of the Royal Statistical Society Series D (The Statistician), 24:179–195.
- Besag, J. (1986). On the statistical analysis of dirty pictures., Journal of the Royal Statistical Society Series B, 48:259–302.Mathematical Reviews (MathSciNet): MR876840
- Bottolo, L. and Richardson, S. (2010). Evolutionary stochastic search for bayesian model exploration., Bayesian Analysis, 5:583–618.Mathematical Reviews (MathSciNet): MR2719668
Digital Object Identifier: doi:10.1214/10-BA523
Project Euclid: euclid.ba/1340380542 - Breheny, P. and Huang, J. (2011). Cooridinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection., The Annals of Applied Statistics, 5:232–253.Mathematical Reviews (MathSciNet): MR2810396
Zentralblatt MATH: 1220.62095
Digital Object Identifier: doi:10.1214/10-AOAS388
Project Euclid: euclid.aoas/1300715189 - Brenner, V., Lindauera, K., Parkara, A., Fordhama, J., Hayesa, I., Stowa, M., Gamaa, R., Pollocka, K., and Jupp, R. (2001). Analysis of cellular adhesion by microarray expression profiling., Journal of Immunological Methods, 250:15–28.
- Carlin, B. P. and Chib, S. (1995). Bayesian model choice via markov chain Monte Carlo methods., Journal of the Royal Statistical Society Series B, 57:473–484.
- Cupples, L. A., Arruda, H. T., Benjamin, E. J., and et al. (2007). The framingham heart study 100k snp genome-wide association study resource: Overview of 17 phenotype working group reports., BMC Medical Genetics, 8(Suppl 1):S1.
- Daubechies, I., Defrise, M., and Mol, C. D. (2004). An iterative thresholding algorithm for linear inverse problems with a sparsity constraint., Commications on Pure and Applied Mathematics, 57:1413–1457.Mathematical Reviews (MathSciNet): MR2077704
Zentralblatt MATH: 1077.65055
Digital Object Identifier: doi:10.1002/cpa.20042 - Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage., Biometrika, 81:425–455.
- Dudoit, S., Shaffer, J. P., and Boldrick, J. C. (2003). Multiple hypothesis testing in microarray experiments., Statistical Science, 18:71–103.Mathematical Reviews (MathSciNet): MR1997066
Digital Object Identifier: doi:10.1214/ss/1056397487
Project Euclid: euclid.ss/1056397487 - Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties., Journal of the American Statistical Association, 96:1348–1360.Mathematical Reviews (MathSciNet): MR1946581
Zentralblatt MATH: 1073.62547
Digital Object Identifier: doi:10.1198/016214501753382273 - Fu, W. J. (1998). Penalized regressions: The bridge versus the lasso., Journal of Computational and Graphical Statistics, 7:397–416.Mathematical Reviews (MathSciNet): MR1646710
- George, E. I. and McCulloch, R. E. (1993). Variable selection via gibbs sampling., Journal of American Statistical Association, 85:398–409.
- Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In, Computing Science and Statistics, Proceedings of the 23rd Symposium on the Interface, pages 156–163.
- Geyer, C. J. and Thompson, E. A. (1992). Constrained monte carlo maximum likelihood for dependent data., Journal of the Royal Statistical Society Series B, 54:657–699.Mathematical Reviews (MathSciNet): MR1185217
- Guyon, X. and Kunsch, H. R. (1992). Asymptotic comparison of estimators in the ising model. In Barone, P., Frigessi, A., and Piccioni, M., editors, Stochastic Models, Statistical Methods, and Algorithms in Image Analysis, pages 177–198. Springer, New York.Mathematical Reviews (MathSciNet): MR1188486
Zentralblatt MATH: 0801.62086
Digital Object Identifier: doi:10.1007/978-1-4612-2920-9_12 - Hans, C., Dobra, A., and West, M. (2007). Shotgun stochastic search for “large p” regression., Journal of the American Statistical Association, 102:507–516.Mathematical Reviews (MathSciNet): MR2370849
Digital Object Identifier: doi:10.1198/016214507000000121 - Ishwaran, H. and Rao, J. S. (2005). Spike and slab variable selection: Frequentist and Bayesian strategies., The Annals of Statistics, 33:730–773.Mathematical Reviews (MathSciNet): MR2163158
Zentralblatt MATH: 1068.62079
Digital Object Identifier: doi:10.1214/009053604000001147
Project Euclid: euclid.aos/1117114335 - Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems., Proceedings of the Royal Society of Landon Series A, 196:453–461.
- Johnstone, I. M. and Silverman, B. W. (2004). Needles and straw in haystacks: Empirical bayes estimates of possibly sparse sequence., The Annals of Statistics, 32:1594–1649.Mathematical Reviews (MathSciNet): MR2089135
Zentralblatt MATH: 1047.62008
Digital Object Identifier: doi:10.1214/009053604000000030
Project Euclid: euclid.aos/1091626180 - Johnstone, I. M. and Silverman, B. W. (2005). Ebayesthresh: R programs for empirical bayes thresholding., Journal of Statistical Software, 12:1–38.Zentralblatt MATH: 0815.62019
- Li, C. and Li, H. (2010). Variable selection and regression analysis for graph-structured covariates with an application to genomics., The Annals of Applied Statistics, 4:1498–1516.Mathematical Reviews (MathSciNet): MR2758338
Zentralblatt MATH: 1202.62157
Digital Object Identifier: doi:10.1214/10-AOAS332
Project Euclid: euclid.aoas/1287409383 - Li, F. and Zhang, N. R. (2010). Bayesian variable selection in structured high-dimensional covariate spaces with application in genomics., Journal of the American Statistical Association, 105:1202–1214.Mathematical Reviews (MathSciNet): MR2752615
Digital Object Identifier: doi:10.1198/jasa.2010.tm08177 - Liang, G. and Yu, B. (2003). Maximum pseudo likelihood estimation in network tomography., IEEE Transactions on Signal Processing, 51:2043– 2053.
- Mase, S. (2000). Marked gibbs processes and asymptotic normality of maximum pseudo-likelihood estimators., Mathematische Nachrichten, 209:151–169.Mathematical Reviews (MathSciNet): MR1734363
Zentralblatt MATH: 1123.62315
Digital Object Identifier: doi:10.1002/(SICI)1522-2616(200001)209:1<151::AID-MANA151>3.0.CO;2-J - Meinshausen, N., Meier, L., and Buehlmann, P. (2009). P-values for high-dimensional regression., Journal of the American Statistical Association, 104:1671–1681.Mathematical Reviews (MathSciNet): MR2750584
Zentralblatt MATH: 1205.62089
Digital Object Identifier: doi:10.1198/jasa.2009.tm08647 - Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression., Journal of the American Statistical Association, 83:1023–1036.Mathematical Reviews (MathSciNet): MR997578
Zentralblatt MATH: 0673.62051
Digital Object Identifier: doi:10.1080/01621459.1988.10478694 - Nawy, T. (2012). Rare variants and the power of association., Nature Methods, 9:324.
- Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method., Biostatistics, 5:155–176.
- Onsager, L. (1943). Crystal statistics. i. A two-dimensional model with an order-disorder transition., Physical Review, 65:117–149.
- Pan, W., Xie, B., and Shen, X. (2010). Incorporating predictor network in penalized regression with application to microarray data., Biometrics, 66:474–484.Mathematical Reviews (MathSciNet): MR2758827
Digital Object Identifier: doi:10.1111/j.1541-0420.2009.01296.x - Rockova, V. and George, E. I. (2014). Incorporating predictor network in penalized regression with application to microarray data., Journal of the American Statistical Association, 109:828–846.Mathematical Reviews (MathSciNet): MR3223753
Digital Object Identifier: doi:10.1080/01621459.2013.869223 - Stingo, F. C., Chen, Y. A., Tadesse, M. G., and Vannucci, M. (2011). Incorporating biological information into linear models: A Bayesian approach to the selection of pathways and genes., The Annals of Applied Statistics, 5:1978–2002.Mathematical Reviews (MathSciNet): MR2884929
Zentralblatt MATH: 1228.62150
Digital Object Identifier: doi:10.1214/11-AOAS463
Project Euclid: euclid.aoas/1318514292 - Sun, T. and Zhang, C.-H. (2012). Scaled sparse linear regression., Biometrika, 99:879–898.Mathematical Reviews (MathSciNet): MR2999166
Zentralblatt MATH: 06111558
Digital Object Identifier: doi:10.1093/biomet/ass043 - Syed, V. and Hecht, N. B. (1997). Up-regulation and down-regulation of genes expressed in cocultures of rat sertoli cells and germ cells., Molecular Reproduction and Development, 47:380–389.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso., Journal of Royal Statistical Society Series B, 58:267–288.Mathematical Reviews (MathSciNet): MR1379242
- Varin, C., Reid, N., and Firth, D. (2011). An overview of composite likelihood methods., Statistica Sinica, 21:5–42.
- Wasserman, L. and Roeder, K. (2009). High-dimensional variable selection., Annals of Statistics, 37:2178–2201.Mathematical Reviews (MathSciNet): MR2543689
Zentralblatt MATH: 1173.62054
Digital Object Identifier: doi:10.1214/08-AOS646
Project Euclid: euclid.aos/1247663752 - Wu, T. T. and Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression., The Annals of Applied Statistics, 2:224–244.Mathematical Reviews (MathSciNet): MR2415601
Zentralblatt MATH: 1137.62045
Digital Object Identifier: doi:10.1214/07-AOAS147
Project Euclid: euclid.aoas/1206367819 - Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables., Journal of Royal Statistical Society Series B, 68:49–67.Mathematical Reviews (MathSciNet): MR2212574
Zentralblatt MATH: 1141.62030
Digital Object Identifier: doi:10.1111/j.1467-9868.2005.00532.x - Zhang, M., Zhang, D., and Wells, M. T. (2010). Generalized thresholding estimators for high-dimensional location parameters., Statistica Sinica, 20:911–926.
- Zhou, X. and Schmidler, S. C. (2009). Bayesian parameter estimation in ising and potts models: A comparative study with applications to protein modeling. Technical report, Duke, University.
- Zou, H. (2006). The adaptive lasso and its oracle properties., Journal of the American Statistical Association, 101:1418–1429.Mathematical Reviews (MathSciNet): MR2279469
Zentralblatt MATH: 1171.62326
Digital Object Identifier: doi:10.1198/016214506000000735
The Institute of Mathematical Statistics and the Bernoulli Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A variational Bayes approach to variable selection
Ormerod, John T., You, Chong, and Müller, Samuel, Electronic Journal of Statistics, 2017 - Moment Conditions Selection Based on Adaptive Penalized Empirical Likelihood
Song, Yunquan, Abstract and Applied Analysis, 2014 - Nonparametric independence screening and structure identification for ultra-high dimensional longitudinal data
Cheng, Ming-Yen, Honda, Toshio, Li, Jialiang, and Peng, Heng, Annals of Statistics, 2014
- A variational Bayes approach to variable selection
Ormerod, John T., You, Chong, and Müller, Samuel, Electronic Journal of Statistics, 2017 - Moment Conditions Selection Based on Adaptive Penalized Empirical Likelihood
Song, Yunquan, Abstract and Applied Analysis, 2014 - Nonparametric independence screening and structure identification for ultra-high dimensional longitudinal data
Cheng, Ming-Yen, Honda, Toshio, Li, Jialiang, and Peng, Heng, Annals of Statistics, 2014 - Selection by partitioning the solution paths
Liu, Yang and Wang, Peng, Electronic Journal of Statistics, 2018 - Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data
Tang, Niansheng, Yan, Xiaodong, and Zhao, Xingqiu, Annals of Statistics, 2020 - Additive partially linear models for massive heterogeneous data
Wang, Binhuan, Fang, Yixin, Lian, Heng, and Liang, Hua, Electronic Journal of Statistics, 2019 - Learning Markov Equivalence Classes of Directed Acyclic Graphs: An Objective Bayes Approach
Castelletti, Federico, Consonni, Guido, Della Vedova, Marco L., and Peluso, Stefano, Bayesian Analysis, 2018 - Power-Expected-Posterior Priors for Generalized Linear Models
Fouskakis, Dimitris, Ntzoufras, Ioannis, and Perrakis, Konstantinos, Bayesian Analysis, 2018 - Joint estimation of precision matrices in heterogeneous populations
Saegusa, Takumi and Shojaie, Ali, Electronic Journal of Statistics, 2016 - Empirical Bayes scaling of Gaussian priors in the white noise model
Szabó, B. T., van der Vaart, A. W., and van Zanten, J. H., Electronic Journal of Statistics, 2013
