Electronic Journal of Statistics

Probabilistic Fréchet means for time varying persistence diagrams

Elizabeth Munch, Katharine Turner, Paul Bendich, Sayan Mukherjee, Jonathan Mattingly, and John Harer

Full-text: Open access


In order to use persistence diagrams as a true statistical tool, it would be very useful to have a good notion of mean and variance for a set of diagrams. In [23], Mileyko and his collaborators made the first study of the properties of the Fréchet mean in $(\mathcal{D}_{p},W_{p})$, the space of persistence diagrams equipped with the p-th Wasserstein metric. In particular, they showed that the Fréchet mean of a finite set of diagrams always exists, but is not necessarily unique. The means of a continuously-varying set of diagrams do not themselves (necessarily) vary continuously, which presents obvious problems when trying to extend the Fréchet mean definition to the realm of time-varying persistence diagrams, better known as vineyards.

We fix this problem by altering the original definition of Fréchet mean so that it now becomes a probability measure on the set of persistence diagrams; in a nutshell, the mean of a set of diagrams will be a weighted sum of atomic measures, where each atom is itself a persistence diagram determined using a perturbation of the input diagrams. This definition gives for each $N$ a map $(\mathcal{D}_{p})^{N}\to\P(\mathcal{D}_{p})$. We show that this map is Hölder continuous on finite diagrams and thus can be used to build a useful statistic on vineyards.

Article information

Electron. J. Statist., Volume 9, Number 1 (2015), 1173-1204.

Received: November 2014
First available in Project Euclid: 1 June 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 55 60

Topological data analysis Fréchet mean time varying data


Munch, Elizabeth; Turner, Katharine; Bendich, Paul; Mukherjee, Sayan; Mattingly, Jonathan; Harer, John. Probabilistic Fréchet means for time varying persistence diagrams. Electron. J. Statist. 9 (2015), no. 1, 1173--1204. doi:10.1214/15-EJS1030. https://projecteuclid.org/euclid.ejs/1433195858

Export citation


  • [1] Agarwal, P. K., Edelsbrunner, H., Harer, J. and Wang, Y. (2006). Extreme elevation on a 2-manifold., Discrete & Computational Geometry 36 553–572.
  • [2] Ban, Y.-E. A., Edelsbrunner, H. and Rudolph, J. (2004). Interface surfaces for protein-protein complexes. In, Proceedings of the Eighth Annual International Conference on Resaerch in Computational Molecular Biology. RECOMB’04 205–212. ACM, New York, NY, USA. DOI:10.1145/974614.974642.
  • [3] Blumberg, A. J., Gal, I., Mandell, M. A. and Pancia, M. (2012). Persistent homology for metric measure spaces, and robust statistics for hypothesis testing and confidence intervals., arXiv:1206.4581.
  • [4] Brown, K. A. and Knudson, K. P. (2009). Nonlinear statistics of human speech data., International Journal of Bifurcation and Chaos 19 2307–2319. DOI:10.1142/S0218127409024086.
  • [5] Bubenik, P. (July, 2012). Statistical topology using persistence landscapes., arXiv:arXiv:1207.6437.
  • [6] Carlsson, G., Ishkhanov, T., de Silva, V. and Zomorodian, A. (2008). On the local behavior of spaces of natural images., International Journal of Computer Vision 76 1–12. DOI:10.1007/s11263-007-0056-x.
  • [7] Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L. J. and Oudot, S. Y. (2009). Proximity of persistence modules and their diagrams. In, Proceedings of the 25th Annual Symposium on Computational Geometry. SCG’09 237–246. ACM, New York, NY, USA. DOI:10.1145/1542362.1542407.
  • [8] Chazal, F., Glisse, M., Labruere, C. and Michel, B. (2013). Optimal rates of convergence for persistence diagrams in topological data analysis., arXiv:1305.6239.
  • [9] Cohen-Steiner, D., Edelsbrunner, H. and Harer, J. (2007). Stability of persistence diagrams., Discrete Comput. Geom. 37 103–120. DOI:10.1007/s00454-006-1276-5.
  • [10] Cohen-Steiner, D., Edelsbrunner, H. and Morozov, D. (2006). Vines and vineyards by updating persistence in linear time., Proceedings of the Twenty-Second Annual Symposium on Computational Geometry – SCG’06 119. DOI:10.1145/1137856.1137877.
  • [11] Dabaghian, Y., Mémoli, F., Frank, L. and Carlsson., G. (2012). A topological paradigm for hippocampal spatial map formation using persistent homology., PLoS Comput. Biol. 8 e1002581. DOI:10.1371/journal.pcbi.1002581.
  • [12] Deckard, A., Perea, J. A., Harer, J. and Haase, S. (2013). SW1PerS: Sliding Windows and 1-Persistence Scoring: Discovering Periodicity in Gene Expression Time Series Data., Preprint.
  • [13] Dequéant, M.-L., Ahnert, S., Edelsbrunner, H., Fink, T. M. A., Glynn, E. F., Hattem, G., Kudlicki, A., Mileyko, Y., Morton, J., Mushegian, A. R., Pachter, L., Rowicka, M., Shiu, A., Sturmfels, B. and Pourquié, O. (2008). Comparison of pattern detection methods in microarray time series of the segmentation clock., PLoS ONE 3 e2856. DOI:10.1371/journal.pone.0002856.
  • [14] Edelsbrunner, H. and Harer, J. (2008)., Persistent Homology – A Survey. Surveys on discrete and computational geometry: Twenty years later, 257–282. American Mathematical Society, Providence, RI.
  • [15] Edelsbrunner, H., Harer, J., Natarajan, V. and Pascucci, V. (2003). Morse-smale complexes for piecewise linear 3-manifolds. In, Proceedings of the Nineteenth Annual Symposium on Computational Geometry. SCG’03 361–370. ACM, New York, NY, USA. DOI:10.1145/777792.777846.
  • [16] Edelsbrunner, H., Letscher, D. and Zomorodian, A. (2000). Topological persistence and simplification. In, 41st Annual Symposium on Foundations of Computer Science, 2000. Proceedings. 454–463. DOI:10.1109/SFCS.2000.892133.
  • [17] Efron, B. and Tibshirani, R. J. (1993)., An Introduction to the Bootstrap. Chapman & Hall, New York.
  • [18] Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C. A., Topp, C. N., Iyer-Pascuzzi, A. S., Zurek, P. R., Fang, S., Harer, J., Benfey, P. N. and Weitz, J. S. (2012). GiA roots: Software for high throughput analysis of plant root system architecture., BMC Plant Biology 12.
  • [19] Gamble, J. and Heo, G. (2010). Exploring uses of persistent homology for statistical analysis of landmark-based shape data., Journal of Multivariate Analysis 101 2184–2199. DOI:10.1016/j.jmva.2010.04.016.
  • [20] Headd, J. J., Ban, Y. E. A., Brown, P., Edelsbrunner, H., Vaidya, M. and Rudolph, J. (2007). Protein-protein interfaces: Properties, preferences, and projections., Journal of Proteome Research 6 2576–2586. PMID: 17542628. DOI:10.1021/pr070018+.
  • [21] Khasawneh, F. A. and Munch, E. (2014). Exploring equilibria in stochastic delay differential equations using persistent homology. In, Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 17–20, 2014, Buffalo, NY, USA. Paper no. DETC2014/VIB-35655.
  • [22] Khasawneh, F. A. and Munch, E. (2014). Stability determination in turning using persistent homology and time series analysis. In, Proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition, November 14–20, 2014, Montreal, Canada. Paper no. IMECE2014-40221.
  • [23] Mileyko, Y., Mukherjee, S. and Harer, J. (2011). Probability measures on the space of persistence diagrams., Inverse Problems 27 124007.
  • [24] Morozov, D. (2008). Homological Illusions of Persistence and Stability PhD thesis, Duke, University.
  • [25] Munkres, J. (1957). Algorithms for the assignment and transportation problems., Journal of the Society for Industrial and Applied Mathematics 5 32–38.
  • [26] Munkres, J. R. (1993)., Elements of Algebraic Topology. Addison Wesley.
  • [27] Perea, J. A. and Harer, J. (2014). Sliding windows and persistence: An application of topological methods to signal analysis., Foundations of Computational Mathematics 1–40. DOI:10.1007/s10208-014-9206-z.
  • [28] Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games., International Journal of Game Theory 4 25–55.
  • [29] Turner, K. (2013). Medians and means for sets of persistence diagrams., arXiv:1307.8300.
  • [30] Turner, K., Mileyko, Y., Mukherjee, S. and Harer, J. (2014). Fréchet means for distributions of persistence diagrams., Discrete & Computational Geometry 52 44–70. DOI:10.1007/s00454-014-9604-7.