Electronic Journal of Statistics

Adaptive Laguerre density estimation for mixed Poisson models

Fabienne Comte and Valentine Genon-Catalot

Full-text: Open access


In this paper, we consider the observation of $n$ i.i.d. mixed Poisson processes with random intensity having an unknown density $f$ on $\mathbb{R}^{+}$. For fixed observation time $T$, we propose a nonparametric adaptive strategy to estimate $f$. We use an appropriate Laguerre basis to build adaptive projection estimators. Non-asymptotic upper bounds of the $\mathbb{L}^{2}$-integrated risk are obtained and a lower bound is provided, which proves the optimality of the estimator. For large $T$, the variance of the previous method increases, therefore we propose another adaptive strategy. The procedures are illustrated on simulated data.

Article information

Electron. J. Statist., Volume 9, Number 1 (2015), 1113-1149.

Received: July 2014
First available in Project Euclid: 27 May 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G07: Density estimation
Secondary: 62C20: Minimax procedures

Adaptive estimators inverse problem Laguerre basis nonparametric estimation poisson mixture


Comte, Fabienne; Genon-Catalot, Valentine. Adaptive Laguerre density estimation for mixed Poisson models. Electron. J. Statist. 9 (2015), no. 1, 1113--1149. doi:10.1214/15-EJS1028. https://projecteuclid.org/euclid.ejs/1432732306

Export citation


  • [1] Abramowitz, M. and Stegun, I.A. (1964)., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55, Washington, D.C.
  • [2] Baudry, J.-P., Maugis, C. and Michel, B. (2012). Slope heuristics: Overview and implementation., Statistics and Computing 22, 455–470.
  • [3] Belomestny, D. and Schoenmakers, J. (2015a). Statistical inference for time-changed Levy processes via Mellin transform approach., Working Paper, http://www.wias-berlin.de/people/schoenma/.
  • [4] Belomestny, D. and Schoenmakers, J. (2015b). Statistical Skorohod embedding problem: Optimality and asymptotic normality., Working Paper, http://www.wias-berlin.de/people/schoenma/.
  • [5] Birgé, L., and Massart, P. (1998). Minimum contrast estimators on sieves: Exponential bounds and rates of convergence., Bernoulli 4, 329–375.
  • [6] Birgé, L. and Massart, P. (2007). Minimal penalties for Gaussian model selection., Probability Theory and Related Fields 138, 33–73.
  • [7] Bongioanni, B. and Torrea, J.L. (2009). What is a Sobolev space for the Laguerre function system?, Studia Mathematica 192(2), 147–172.
  • [8] Comte, F., Cuenod, C.-A., Pensky, M. and Rozenholc, Y. (2013). Laplace deconvolution on the basis of time domain data and its application to Dynamic Contrast Enhanced imaging. Preprint MAP5, 2012–17.
  • [9] Fabio, L.C., Paula, G.A. and de Castro, M. (2012). A Poisson mixed model with nonnormal random effect distribution., Comput. Statist. Data Anal. 56, 1499–1510.
  • [10] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems., Ann. Statist. 19(3), 1257–1272.
  • [11] Grandell, J. (1997)., Mixed Poisson Processes. Monographs on Statistics and Applied Probability, 77. Chapman & Hall, London.
  • [12] Hall, P. and Heyde, C.C. (1980)., Martingale Limit Theory and Its Applications. Academic press, Inc. (London) LTD.
  • [13] Hengartner, N.W. (1997). Adaptive demixing in Poisson mixture models., Ann. Statist. 25, 917–928.
  • [14] Karr, A.F. (1984). Combined nonparametric inference and state estimation for mixed Poisson processes., Z. Wahrsch. Verw. Gebiete 66, 81–96.
  • [15] Klein, T. and Rio, E. (2005). Concentration around the mean for maxima of empirical processes., Ann. Probab. 33, 1060–1077.
  • [16] Kutoyants, Yu. A. (1998)., Statistical Inference for Spatial Poisson Processes. Lecture Notes in Statistics, 134. Springer-Verlag, New York.
  • [17] Loh, W.-L. and Zhang, C.-H. (1996). Global properties of kernel estimators for mixing densities in discrete exponential family models., Statist. Sinica 6, 561–578.
  • [18] Loh, W.-L. and Zhang, C.-H. (1997). Estimating mixing densities in exponential family models for discrete variables., Scand. J. Statist. 24, 15–32.
  • [19] Massart, P. (2007)., Concentration Inequalities and Model Selection. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003. With a foreword by Jean Picard. Lecture Notes in Mathematics, 1896. Springer, Berlin.
  • [20] Mikosch, T. (2009)., Non-Life Insurance Mathematics. An Introduction with the Poisson Process. Second edition. Universitext. Springer-Verlag, Berlin.
  • [21] Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolution., Ann. Statist. 27, 2033–2053.
  • [22] Rebafka, T. and Roueff, F. (2010). Nonparametric estimation of the mixing density using polynomials., Preprint arXiv:1002.4516 [math.ST].
  • [23] Reynaud-Bouret, P. (2003). Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities., Probab. Theory Related Fields 126, 103–153.
  • [24] Reynaud-Bouret, P. and Rivoirard, V. (2010). Near optimal thresholding estimation of a Poisson intensity on the real line., Electron. J. Stat. 4, 172–238.
  • [25] Roueff, F. and Rydén, T. (2005). Nonparametric estimation of mixing densities for discrete distributions., Ann. Statist. 33, 2066–2108.
  • [26] Shen, J. (2000). Stable and efficient spectral methods in unbounded domains using Laguerre functions., SIAM J. Numer. Anal. 38, 1113–1133.
  • [27] Simar, L. (1976). Maximum likelihood estimation of a compound Poisson process., Ann. Statist. 4, 1200–1209.
  • [28] Tsybakov, A. B. (2009)., Introduction to Nonparametric Estimation. Revised and extended from the 2004 French original. Translated by Vladimir Zaiats. Springer Series in Statistics. Springer, New York.
  • [29] Zhang, C.-H. (1995). On estimating mixing densities in discrete exponential family models., Ann. Statist. 23, 929–945.