Open Access
2014 Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding
Vince Lyzinski, Daniel L. Sussman, Minh Tang, Avanti Athreya, Carey E. Priebe
Electron. J. Statist. 8(2): 2905-2922 (2014). DOI: 10.1214/14-EJS978

Abstract

Vertex clustering in a stochastic blockmodel graph has wide applicability and has been the subject of extensive research. In this paper, we provide a short proof that the adjacency spectral embedding can be used to obtain perfect clustering for the stochastic blockmodel and the degree-corrected stochastic blockmodel. We also show an analogous result for the more general random dot product graph model.

Citation

Download Citation

Vince Lyzinski. Daniel L. Sussman. Minh Tang. Avanti Athreya. Carey E. Priebe. "Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding." Electron. J. Statist. 8 (2) 2905 - 2922, 2014. https://doi.org/10.1214/14-EJS978

Information

Published: 2014
First available in Project Euclid: 9 January 2015

zbMATH: 1308.62131
MathSciNet: MR3299126
Digital Object Identifier: 10.1214/14-EJS978

Subjects:
Primary: 62C30
Secondary: 05C80

Keywords: clustering , degree corrected stochastic block model , Stochastic block model

Rights: Copyright © 2014 The Institute of Mathematical Statistics and the Bernoulli Society

Vol.8 • No. 2 • 2014
Back to Top