Electronic Journal of Statistics

A quantile varying-coefficient regression approach to length-biased data modeling

Xuerong Chen, Alan T. K. Wan, and Yong Zhou

Full-text: Open access

Abstract

Recent years have seen a growing body of literature on the analysis of length-biased data. Much of this literature adopts the accelerated failure time or proportional hazards models as the basis of study. The overwhelming majority of the existing work also assumes independence between the censoring variable and covariates. In this paper, we develop a varying-coefficient quantile regression approach to model length-biased data. Our approach does not only allow the direct estimation of the conditional quantiles of survival times based on a flexible model structure, but also has the important appeal of permitting dependence between the censoring variable and the covariates. We develop local linear estimators of the coefficients using a local inverse probability weighted estimating equation approach, and examine these estimators’ asymptotic properties. Moreover, we develop a resampling method for computing the estimators’ covariances. The small sample properties of the proposed methods are investigated in a simulation study. A real data example illustrates the application of the methods in practice.

Article information

Source
Electron. J. Statist., Volume 8, Number 2 (2014), 2514-2540.

Dates
First available in Project Euclid: 9 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1418134262

Digital Object Identifier
doi:10.1214/14-EJS959

Mathematical Reviews number (MathSciNet)
MR3285874

Zentralblatt MATH identifier
1302.62124

Subjects
Primary: 62G08: Nonparametric regression 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 62N02: Estimation

Keywords
Estimating equation length-biased local linear prevalent cohort quantile regression resampling method right-censored varying-coefficient

Citation

Chen, Xuerong; Wan, Alan T. K.; Zhou, Yong. A quantile varying-coefficient regression approach to length-biased data modeling. Electron. J. Statist. 8 (2014), no. 2, 2514--2540. doi:10.1214/14-EJS959. https://projecteuclid.org/euclid.ejs/1418134262


Export citation

References

  • [1] Addona, V. and Wolfson, D. B. (2006). A formal test for the stationarity of the incidence rate using data from a prevalent cohort study with follow-up., Lifetime Data Anal. 12 267–284.
  • [2] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study., Ann. Statist. 10 1100–1120.
  • [3] Asgharian, M., M’Lan, C. M. and Wolfson, D. B. (2002). Length-biased sampling with right censoring: An unconditional approach., J. Amer. Statist. Assoc. 97 201–209.
  • [4] Asgharian, M. and Wolfson, D. B. (2005). Asymptotic behavior of the unconditional NPMLE of the length-biased survivor function from right censored prevalent cohort data., Ann. Statist. 33 2109–2131.
  • [5] Bang, H. and Tsiatis, A. A. (2002). Median regression with censored cost data., Biometrics 58 643–649.
  • [6] Breslow, N. E. (1972). Discussion of the paper by D. R. Cox., J. R. Stat. Soc. Ser. B Stat. Methodol 34 216–217.
  • [7] Cai, J., Fan, J., Jiang, J. and Zhou, H. (2007). Partially linear hazard regression for multivariate survival data., J. Amer. Statist. Assoc. 102 538–551.
  • [8] Cai, J., Fan, J., Jiang, J. and Zhou, H. (2008). Partially linear hazard regression with varying coefficients for multivariate survival data., J. R. Stat. Soc. Ser. B Stat. Methodol 70 141–158.
  • [9] Cai, J., Fan, J., Zhou, H. and Zhou, Y. (2007a). Hazard models with varying coefficient for multivariate failure time data., Ann. Statist. 35 324–354.
  • [10] Cai, Z. (2007). Trending time-varying coefficient time series models with serially correlated errors., J. Econometrics 136 163–188.
  • [11] Cai, Z., Fan, J. and Yao, Q. (2000). Functional-coefficient regression models for nonlinear time series., J. Amer. Statist. Assoc. 95 941–956.
  • [12] Cai, Z. and Xu, X. (2008). Nonparametric quantile estimations for dynamic smooth coefficient models., J. Amer. Statist. Assoc. 103 1595–1608.
  • [13] Chen, R. and Tsay, R. S. (1993). Functional-coefficient autoregressive models., J. Amer. Statist. Assoc 88 298–308.
  • [14] Chen, X. and Zhou, Y. (2012). Quantile regression for right-censored and length-biased Data., Acta Mathematicae Applicatae Sinica (English Series) 28 443–462.
  • [15] Cleveland, W. S., Gross, E. and Shhyu, W. M. (1992). Local regression models. In, Statistical Models in S (eds. J. M. Chambers and T. J. Hastie), Pacific Grove, CA: Wadsworth and Brooks, 309–376.
  • [16] Efron, B. (1979). Bootstrap methods: Another Look at the Jackknife., Ann. Statist. 7 1–26.
  • [17] Efron, B. (1981). Censored data and the bootstrap., J. Amer. Statist. Assoc. 72 316–319.
  • [18] Fan, J. and Fan, Y. (2006). Comment on “Quantile Autoregression”., J. Amer. Statist. Assoc. 101 991–994.
  • [19] Fan, J., Heckman, N. and Wand, M. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions., J. Amer. Statist. Assoc. 90 141–150.
  • [20] Fan, J. and Huang, T. (2005). Profile likelihood inferences on semiparametric varying coefficient partially linear models., Bernoulli 11 1031–1057.
  • [21] Fan, J. and Li, R. Z. (2004). New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis., J. Amer. Statist. Assoc. 99 710–723.
  • [22] Fan, J., Lin, H. and Zhou, Y. (2006). Local partial-likelihood estimation for lifetime data., Ann. Statist. 34 290–325.
  • [23] Fan, J. and Zhang, J. T. (2000). Two-step estimation of functional linear models with applications to longitudinal data., J. R. Stat. Soc. Ser. B Stat. Methodol 62 303–322.
  • [24] Fan, J. and Zhang, W. (2008). Statistical methods with varying coefficient models., Statistics and Its Interface 1 179–195.
  • [25] Fleming, T. R. and Harrington, D. P. (1991)., Counting Processes and Survival Analysis. Wiley: New York.
  • [26] Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models., J. R. Stat. Soc. Ser. B Stat. Methodol 55 757–796.
  • [27] Honda, T. (2004). Quantile regression in varying coefficient models., Journal of Statistical Planning and Inference 121 113–125.
  • [28] Honoré, B., Khan, S. and Powell, J. L. (2002). Quantile regression under random censoring., J. Econometrics 109 67–105.
  • [29] Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L. P. (1998). Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data., Biometrika 85 809–822.
  • [30] Kim, M. O. (2007). Quantile regression with varying-coefficients., Ann. Statist. 35 92–108.
  • [31] Knight, K. (1998). Limiting distribution for $L_1$ regression estimator under general conditions., Ann. Statist. 26 755–770.
  • [32] Koenker, R. and Geling, O. (2001). Reappraising medfly longevity: A quantile regression survival analysis., J. Amer. Statist. Assoc 96 458–468.
  • [33] Lin, D. Y. (2007). On the Bresolw estimator., Lifetime Data Anal. 13 471–480.
  • [34] Lin, D. Y., Wei, L. J. and Ying, Z. L. (1993). Checking the Cox model with cumulative sums of martingale-based residuals., Biometrika 80 557–572.
  • [35] Ning, J., Qin, J. and Shen, Y. (2011). Buckley-James-type estimator with right-censored and length-biased Data., Biometrics 67 1369–1378.
  • [36] Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators., Econometric Theory 7 186–199.
  • [37] Qin, J. and Shen, Y. (2010). Statistical methods for analyzing right-censored length-biased data under Cox Model., Biometrics 66 382–392.
  • [38] Redelmeier, D. A. and Singh, S. M. (2001). Survival in academy award winning actors and actresses., Ann. Intern. Med. 134 955–962.
  • [39] Shen, Y., Ning, J. and Qin, J. (2009). Analyzing length-biased data with semiparametric transformation and accelerated failure time models., J. Amer. Statist. Assoc. 104 1192–1202.
  • [40] Sylvestre, M. P., Huszti, E. and Hanley, J. A. (2006). Do Oscar winners live longer than less successful peers? A reanalysis of the evidence., Ann. Intern. Med. 145 361–363.
  • [41] Vardi, Y. (1982). Nonparametric estimation in the presence of length bias., Ann. Statist. 10 616–620.
  • [42] Vardi, Y. (1985). Empirical distribution in selection bias models., Ann. Statist. 13 178–203.
  • [43] Wang, H. and Wang, L. (2011). Quantile regression analysis of length-biased survival data., Stat. 3 31–47.
  • [44] Wolkewitz, M., Allignol, A., Schumacher, M. and Beyersmann, J. (2010). Two pitfalls in survival analyses of time–dependent exposure: A case study in a cohort of Oscar nominees., The Amer. Statistician 64 205–211.
  • [45] Wu, Y., Fan, J. Q. and Müller, H. (2010). Varying-coefficient functional linear regression., Bernoulli 16 730–758.
  • [46] Yang, S. (1999). Censored median regression using weighted empirical survival and hazard functions., J. Amer. Statist. Assoc. 94 137–145.
  • [47] Yin, G., Zeng, D. and Li, H. (2008). Power-transformed linear quantile regression with censored data., J. Amer. Statist. Assoc. 103 1214–1224.
  • [48] Ying, Z., Jung, S. H. and Wei, L. J. (1995). Survival analysis with median regression models., J. Amer. Statist. Assoc. 90 174–184.