Electronic Journal of Statistics
- Electron. J. Statist.
- Volume 8, Number 1 (2014), 1405-1437.
Maximum-likelihood estimation of a log-concave density based on censored data
Lutz Dümbgen, Kaspar Rufibach, and Dominic Schuhmacher
Abstract
We consider nonparametric maximum-likelihood estimation of a log-concave density in case of interval-censored, right-censored and binned data. We allow for the possibility of a subprobability density with an additional mass at $+\infty$, which is estimated simultaneously. The existence of the estimator is proved under mild conditions and various theoretical aspects are given, such as certain shape and consistency properties. An EM algorithm is proposed for the approximate computation of the estimator and its performance is illustrated in two examples.
Article information
Source
Electron. J. Statist., Volume 8, Number 1 (2014), 1405-1437.
Dates
First available in Project Euclid: 20 August 2014
Permanent link to this document
https://projecteuclid.org/euclid.ejs/1408540292
Digital Object Identifier
doi:10.1214/14-EJS930
Mathematical Reviews number (MathSciNet)
MR3263127
Zentralblatt MATH identifier
1298.62062
Subjects
Primary: 62G07: Density estimation 62N01: Censored data models 62N02: Estimation 65C60: Computational problems in statistics
Keywords
Active set algorithm binning cure parameter expectation-maximization algorithm interval-censoring qualitative constraints right-censoring
Citation
Dümbgen, Lutz; Rufibach, Kaspar; Schuhmacher, Dominic. Maximum-likelihood estimation of a log-concave density based on censored data. Electron. J. Statist. 8 (2014), no. 1, 1405--1437. doi:10.1214/14-EJS930. https://projecteuclid.org/euclid.ejs/1408540292

