Electronic Journal of Statistics

Rejoinder of “Dynamic treatment regimes: Technical challenges and applications”

Eric B. Laber, Daniel J. Lizotte, Min Qian, William E. Pelham, and Susan A. Murphy

Full-text: Open access

Article information

Source
Electron. J. Statist., Volume 8, Number 1 (2014), 1312-1321.

Dates
First available in Project Euclid: 20 August 2014

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1408540288

Digital Object Identifier
doi:10.1214/14-EJS920REJ

Mathematical Reviews number (MathSciNet)
MR3263123

Zentralblatt MATH identifier
1309.62174

Citation

Laber, Eric B.; Lizotte, Daniel J.; Qian, Min; Pelham, William E.; Murphy, Susan A. Rejoinder of “Dynamic treatment regimes: Technical challenges and applications”. Electron. J. Statist. 8 (2014), no. 1, 1312--1321. doi:10.1214/14-EJS920REJ. https://projecteuclid.org/euclid.ejs/1408540288


Export citation

References

  • Bartlett, P.L., Jordan, M.I., and McAuliffe, J.D., Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.
  • Horst, R. and Thoai, N.V., Dc programming: Overview. Journal of Optimization Theory and Applications, 103(1):1–43, 1999.
  • Kosorok, M.R., Introduction to Empirical Processes and Semiparametric Inference. Springer, 2008.
  • Laber, E.B. and Murphy, S.A., Adative inference after model selection, 2013.
  • Laber, E.B., Lizotte, D.J., and Ferguson, B. Set-valued dynamic treatment regimes for competing outcomes. Biometrics, 2014.
  • Orellana, L., Rotnitzky, A., and Robins, J., Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part i: Main content. Int. Jrn. of Biostatistics, 6(2), 2010.
  • Qian, M. and Murphy, S.A., Performance guarantees for individualized treatment rules. The Annals of Statistics, 39(2):1180–1210, 2011.
  • Schulte, P.J., Tsiatis, A.A. Laber, E.B., and Davidian, M., Q- and a-learning methods for estimating optimal dynamic treatment regimes. Technical Report, 1202.4177v2, arXiv.org, 2013.
  • Zhang, B., Tsiatis, A.A., Laber, E.B., and Davidian, M., Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. Biometrika, To appear, 2013.
  • Zhang, B., Tsiatis, A.A., Laber, E.B., and Davidian, M., A robust method for estimating optimal treatment regimes. Biometrics, 68(4):1010–1018, 2012.
  • Zhao, Y., Zeng, D., Rush, A.J., and Kosorok, M.R., Estimating individualized treatment rules using outcome weighted learning. Journal of the American Statistical Association, 107(499):1106–1118, 2012.

See also

  • Related item: Laber, E. B. et al. (2014). Dynamic treatment regimes: Technical challenges and applications. Electron. J. Statist. 8(1) 1225–1272.