Electronic Journal of Statistics

Random Latin squares and Sudoku designs generation

Roberto Fontana

Full-text: Open access

Abstract

Uniform random generation of Latin squares is a classical problem. In this paper we prove that both Latin squares and Sudoku designs are maximum cliques of properly defined graphs. We have developed a simple algorithm for uniform random sampling of Latin squares and Sudoku designs. The corresponding SAS code is available in the supplementary material.

Article information

Source
Electron. J. Statist., Volume 8, Number 1 (2014), 883-893.

Dates
First available in Project Euclid: 26 June 2014

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1403812156

Digital Object Identifier
doi:10.1214/14-EJS913

Mathematical Reviews number (MathSciNet)
MR3229101

Zentralblatt MATH identifier
1348.62227

Subjects
Primary: 62K15: Factorial designs

Keywords
Latin squares Sudoku designs random generation cliques

Citation

Fontana, Roberto. Random Latin squares and Sudoku designs generation. Electron. J. Statist. 8 (2014), no. 1, 883--893. doi:10.1214/14-EJS913. https://projecteuclid.org/euclid.ejs/1403812156


Export citation

References

  • [1] Bailey, R. A., Cameron, P. J. and Connelly, R. (2008). Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes. Amer. Math. Monthly 115 383–404.
  • [2] Behrens, W. (1956). Feldversuchsanordnungen mit verbessertem Ausgleich der Bodenunterschiede. Zeitschrift für Landwirtschaftliches Versuchsund Untersuchungswesen 2 176–193.
  • [3] Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research. InterJournal Complex Systems 1695.
  • [4] Dahl, G. (2009). Permutation matrices related to Sudoku. Linear Algebra and Its Applications 430 2457–2463.
  • [5] Fontana, R. (2011). Fractions of permutations. An application to Sudoku. Journal of Statistical Planning and Inference 141 3697–3704.
  • [6] Fontana, R. (2014). Supplement to “Random Latin squares and Sudoku designs generation”. DOI: 10.1214/14-EJS913SUPP.
  • [7] Jacobson, M. T. and Matthews, P. (1996). Generating uniformly distributed random Latin squares. Journal of Combinatorial Designs 4 405–437.
  • [8] Niskanen, S. and Östergård, P. R. (2003). Cliquer User’s Guide: Version 1.0. Helsinki University of Technology.
  • [9] Shao, B., Wang, H. and Xiao, Y. (2012). Managing and mining large graphs: Systems and implementations. In Proceedings of the 2012 International Conference on Management of Data 589–592. ACM.
  • [10] Yates, F. (1933). The formation of Latin squares for use in field experiments. Empire Journal of Experimental Agriculture 1 235–244.
  • [11] (2012). SAS/OR(R) 12.1 User’s Guide: Network Optimization Algorithms.

Supplemental materials