Open Access
2014 Sensitivity analysis for multidimensional and functional outputs
Fabrice Gamboa, Alexandre Janon, Thierry Klein, Agnès Lagnoux
Electron. J. Statist. 8(1): 575-603 (2014). DOI: 10.1214/14-EJS895

Abstract

Let $X:=(X_{1},\ldots,X_{p})$ be random objects (the inputs), defined on some probability space $(\Omega,\mathcal{F},\mathbb{P})$ and valued in some measurable space $E=E_{1}\times\ldots\times E_{p}$. Further, let $Y:=Y=f(X_{1},\ldots,X_{p})$ be the output. Here, $f$ is a measurable function from $E$ to some Hilbert space $\mathbb{H}$ ($\mathbb{H}$ could be either of finite or infinite dimension). In this work, we give a natural generalization of the Sobol indices (that are classically defined when $Y\in\mathbb{R}$), when the output belongs to $\mathbb{H}$. These indices have very nice properties. First, they are invariant under isometry and scaling. Further they can be, as in dimension $1$, easily estimated by using the so-called Pick and Freeze method. We investigate the asymptotic behaviour of such an estimation scheme.

Citation

Download Citation

Fabrice Gamboa. Alexandre Janon. Thierry Klein. Agnès Lagnoux. "Sensitivity analysis for multidimensional and functional outputs." Electron. J. Statist. 8 (1) 575 - 603, 2014. https://doi.org/10.1214/14-EJS895

Information

Published: 2014
First available in Project Euclid: 20 May 2014

zbMATH: 1348.62106
MathSciNet: MR3211025
Digital Object Identifier: 10.1214/14-EJS895

Subjects:
Primary: 62G05 , 62G20

Keywords: Concentration inequalities , quadratic functionals , Semi-parametric efficient estimation , sensitivity analysis , Sobol indices , temporal output , vector output

Rights: Copyright © 2014 The Institute of Mathematical Statistics and the Bernoulli Society

Vol.8 • No. 1 • 2014
Back to Top