Electronic Journal of Statistics

A goodness of fit test for the survival function under random right censoring

Dimitrios Bagkavos, Dimitrios Ioannides, and Aglaia Kalamatianou

Full-text: Open access


The present article contributes a goodness of fit test for the survival function under random right censoring. The test is based on a central limit theorem for the Integrated Square Error of an already existing in the literature kernel survival function estimate. Establishment of its asymptotic distribution yields the proposed test statistic for drawing decision on the null hypothesis of correctness of the assumed survival function. Numerical simulations quantify the empirical nominal level and power of the suggested test for various sample sizes and amounts of censoring and facilitate comparison with the power of the data driven Neyman goodness of fit test for censored samples.

Article information

Electron. J. Statist., Volume 7 (2013), 2550-2576.

Received: May 2012
First available in Project Euclid: 8 October 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G10: Hypothesis testing
Secondary: 62N03: Testing

Survival function goodness of fit censoring kernel


Bagkavos, Dimitrios; Ioannides, Dimitrios; Kalamatianou, Aglaia. A goodness of fit test for the survival function under random right censoring. Electron. J. Statist. 7 (2013), 2550--2576. doi:10.1214/13-EJS853. https://projecteuclid.org/euclid.ejs/1381239961

Export citation


  • [1] Adamidis, I. and Loukas, S. (1998). A lifetime distribution with decreasing failure rate., Statist Probab. Letters 39 35–42.
  • [2] Bagkavos, D. and Ioannides, D. (2012). Smooth confidence intervals for the survival function under random right censoring., Electron. J. Stat. 6 843–860.
  • [3] Bagkavos, D., Ioannides, D. and Kalamatianou, A. (2013). Supplement to “A goodness of fit test for the survival function under random right censoring”. DOI:, 10.1214/13-EJS853SUPP.
  • [4] Berg, A. and Politis, D. (2009). Cdf and survival function estimation with infinite-order kernels., EElectron. J. Stat. 3 1436–1454.
  • [5] Cordeiro, G. M. and Lemonte, A. J. (2011). The $\beta$–Birnbaum–Saunders distribution: An improved distribution for fatigue life modeling., Comp. Statist. and Data Analys. 55 1445–1461.
  • [6] Chacon, J. E., Duong, T. and Wand, M. P. (2011). Asymptotics for general multivariate kernel density derivative estimators., Statistica Sinica 21 807–840.
  • [7] Dahiya, R. C. and Gurland, J. (1972). Goodness of fit tests for the gamma and exponential distributions., Technometrics 14 791–801.
  • [8] Del Castillo, J. and Puig, P. (1999). Invariant exponential models applied to reliability theory and survival analysis., J. Amer. Statist. Assoc. 94 522–528.
  • [9] Hall, P. (1984). Central limit theorem for integrated square error of multivariate nonparametric density estimators., J. Mult. Anal. 14 1–16.
  • [10] Hall, P. and Heyde, C. (1980)., Martingale limit theory and its applications, Academic Press, New York.
  • [11] Hyndman, R. and Fan, Y. (1996). Sample quantiles in statistical packages., The American Statistician 50 361–365.
  • [12] Ioannides, D. (1992). Integrated square error of nonparametric estimators of regression function: The fixed design case., Statist. Probab. Letters 15 85–94.
  • [13] Jones, C. (1993). Simple boundary correction for density estimation kernel., Statist. Computing 3 135–146.
  • [14] Gleser, L. G. (1989). The gamma distribution as a mixture of exponential distributions., Amer. Statist. 43 115–117.
  • [15] Gulati, S. and Padgett, W. J. (1996). Families of smooth confidence bands for the survival function under the general random censorship model., Lifetime Data Anal. 2 349–362.
  • [16] Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations., J. Amer. Statist. Assoc. 53 457–481.
  • [17] Keating, J. P., Glaser, R. E. and Ketchum, N. S. (1990). Testing hypotheses about the shape parameter of a gamma distribution., Technometrics 32 67–82.
  • [18] Kus, C. (2007). A new lifetime distribution., Comp. Statist. and Data Analys. 51 4497–4509.
  • [19] Kim, C., Bae, W., Choi, H. and Park, B. U. (2005). Non-parametric hazard function estimation using the Kaplan-Meier estimator., J. Nonparam. Statist. 17 937–948.
  • [20] Kraus, D. (2009). surv2sample: Two-sample tests for survival analysis., http://cran.r-project.org/src/contrib/Archive/surv2sample/.
  • [21] Marron, J. S. and Padgett, W. J. (1987). Asymptotically optimal bandwidth selection for kernel density estimators from randomly right censored samples., Ann. Statist. 15 1520–1535.
  • [22] Proschan, F. (1963). Theoretical explanation of observed decreasing failure rate., Technometrics 5 375–383.
  • [23] Tahmasbi, R. and Rezaei, S. (2008). A two-parameter lifetime distribution with decreasing failure rate., Comp Statist. and Data Analys. 52 3889–3901.

Supplemental materials