Electronic Journal of Statistics
- Electron. J. Statist.
- Volume 7 (2013), 1655-1685.
Exact risk improvement of bandwidth selectors for kernel density estimation with directional data
Full-text: Open access
Abstract
New bandwidth selectors for kernel density estimation with directional data are presented in this work. These selectors are based on asymptotic and exact error expressions for the kernel density estimator combined with mixtures of von Mises distributions. The performance of the proposed selectors is investigated in a simulation study and compared with other existing rules for a large variety of directional scenarios, sample sizes and dimensions. The selector based on the exact error expression turns out to have the best behaviour of the studied selectors for almost all the situations. This selector is illustrated with real data for the circular and spherical cases.
Article information
Source
Electron. J. Statist., Volume 7 (2013), 1655-1685.
Dates
First available in Project Euclid: 19 June 2013
Permanent link to this document
https://projecteuclid.org/euclid.ejs/1371649230
Digital Object Identifier
doi:10.1214/13-EJS821
Mathematical Reviews number (MathSciNet)
MR3070874
Zentralblatt MATH identifier
1327.62241
Subjects
Primary: 62G07: Density estimation
Keywords
Bandwidth selection directional data mixtures kernel density estimator von Mises
Citation
García–Portugués, Eduardo. Exact risk improvement of bandwidth selectors for kernel density estimation with directional data. Electron. J. Statist. 7 (2013), 1655--1685. doi:10.1214/13-EJS821. https://projecteuclid.org/euclid.ejs/1371649230
References
- [1] Azzalini, A. (1985). A class of distributions which includes the normal ones., Scand. J. Statist. 12 171–178.Mathematical Reviews (MathSciNet): MR808153
- [2] Bai, Z. D., Rao, C. R. and Zhao, L. C. (1988). Kernel estimators of density function of directional data., J. Multivariate Anal. 27 24–39.Mathematical Reviews (MathSciNet): MR971170
Digital Object Identifier: doi:10.1016/0047-259X(88)90113-3 - [3] Banerjee, A., Dhillon, I. S., Ghosh, J. and Sra, S. (2005). Clustering on the unit hypersphere using von Mises-Fisher distributions., J. Mach. Learn. Res. 6 1345–1382.Mathematical Reviews (MathSciNet): MR2249858
- [4] Bingham, C. and Mardia, K. V. (1978). A small circle distribution on the sphere., Biometrika 65 379–389.
- [5] Cabella, P. and Marinucci, D. (2009). Statistical challenges in the analysis of cosmic microwave background radiation., Ann. Appl. Stat. 3 61–95.Mathematical Reviews (MathSciNet): MR2668700
Digital Object Identifier: doi:10.1214/08-AOAS190
Project Euclid: euclid.aoas/1239888363 - [6] Cao, R., Cuevas, A. and Gonzalez Manteiga, W. (1994). A comparative study of several smoothing methods in density estimation., Comput. Statist. Data Anal. 17 153–176.
- [7] Chacón, J. E. and Duong, T. (2013). Data–driven density derivative estimation, with applications to nonparametric clustering and bump hunting., Electron. J. Stat. 7 499-532.Mathematical Reviews (MathSciNet): MR3035264
Digital Object Identifier: doi:10.1214/13-EJS781
Project Euclid: euclid.ejs/1362579368 - [8] Chiu, S.-T. (1996). A comparative review of bandwidth selection for kernel density estimation., Statist. Sinica 6 129–145.Mathematical Reviews (MathSciNet): MR1379053
- [9] Ćwik, J. and Koronacki, J. (1997). A combined adaptive-mixtures/plug-in estimator of multivariate probability densities., Comput. Statist. Data Anal. 26 199–218.
- [10] Di Marzio, M., Panzera, A. and Taylor, C. C. (2009). Local polynomial regression for circular predictors., Statist. Probab. Lett. 79 2066–2075.Mathematical Reviews (MathSciNet): MR2571770
- [11] Di Marzio, M., Panzera, A. and Taylor, C. C. (2011). Kernel density estimation on the torus., J. Statist. Plann. Inference 141 2156–2173.Mathematical Reviews (MathSciNet): MR2772221
Digital Object Identifier: doi:10.1016/j.jspi.2011.01.002 - [12] Durastanti, C., Lan, X. and Marinucci, D. (2013). Needlet–Whittle estimates on the unit sphere., Electron. J. Stat. 7 597-646.Mathematical Reviews (MathSciNet): MR3035267
Digital Object Identifier: doi:10.1214/13-EJS782
Project Euclid: euclid.ejs/1363268499 - [13] Fernández-Durán, J. J. (2004). Circular distributions based on nonnegative trigonometric sums., Biometrics 60 499–503.Mathematical Reviews (MathSciNet): MR2067006
Digital Object Identifier: doi:10.1111/j.0006-341X.2004.00195.x - [14] Fernández-Durán, J. J. (2007). Models for circular-linear and circular-circular data constructed from circular distributions based on nonnegative trigonometric sums., Biometrics 63 579–585.Mathematical Reviews (MathSciNet): MR2370817
Digital Object Identifier: doi:10.1111/j.1541-0420.2006.00716.x - [15] Fernández-Durán, J. J. and Gregorio-Domínguez, M. M. (2010). Maximum likelihood estimation of nonnegative trigonometric sum models using a Newton-like algorithm on manifolds., Electron. J. Stat. 4 1402–1410.Mathematical Reviews (MathSciNet): MR2741206
Digital Object Identifier: doi:10.1214/10-EJS587
Project Euclid: euclid.ejs/1291903543 - [16] García-Portugués, E., Crujeiras, R. M. and González-Manteiga, W. (2012). Exploring wind direction and SO$_2$ concentration by circular–linear density estimation., Stoch. Environ. Res. Risk Assess.
- [17] García-Portugués, E., Crujeiras, R. M. and González-Manteiga, W. (2012). Kernel density estimation for directional–linear data., arXiv:1208.4811.
- [18] Hall, P., Watson, G. S. and Cabrera, J. (1987). Kernel density estimation with spherical data., Biometrika 74 751–762.
- [19] Hornik, K. and Grün, B. (2012). movMF: Mixtures of von Mises-Fisher Distributions R package version, 0.1-0.
- [20] Horová, I., Koláček, J. and Vopatová, K. (2013). Full bandwidth matrix selectors for gradient kernel density estimate., Comput. Statist. Data Anal. 57 364–376.Mathematical Reviews (MathSciNet): MR2981094
- [21] Jammalamadaka, S. R. and Lund, U. J. (2006). The effect of wind direction on ozone levels: a case study., Environ. Ecol. Stat. 13 287–298.Mathematical Reviews (MathSciNet): MR2242190
Digital Object Identifier: doi:10.1007/s10651-004-0012-7 - [22] Johnson, M. E. (1987)., Multivariate statistical simulation. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. John Wiley & Sons Ltd., New York.
- [23] Jones, C., Marron, J. S. and Sheather, S. J. (1996). Progress in data-based bandwidth selection for kernel density estimation., Computation. Stat. 11 337–381.Mathematical Reviews (MathSciNet): MR1415761
- [24] Jupp, P. E. and Mardia, K. V. (1989). A unified view of the theory of directional statistics, 1975-1988., Int. Stat. Rev. 57 261–294.
- [25] Klemelä, J. (2000). Estimation of densities and derivatives of densities with directional data., J. Multivariate Anal. 73 18–40.
- [26] Lebedev, V. I. and Laikov, D. N. (1995). A quadrature formula for the sphere of the 131st algebraic order of accuracy., Dokl. Math. 59 477–481.
- [27] Mardia, K. V. and Jupp, P. E. (2000)., Directional statistics. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester.Mathematical Reviews (MathSciNet): MR1828667
- [28] Marron, J. S. and Wand, M. P. (1992). Exact mean integrated squared error., Ann. Statist. 20 712–736.Mathematical Reviews (MathSciNet): MR1165589
Digital Object Identifier: doi:10.1214/aos/1176348653
Project Euclid: euclid.aos/1176348653 - [29] Oliveira, M., Crujeiras, R. M. and Rodríguez-Casal, A. (2012). A plug-in rule for bandwidth selection in circular density estimation., Comput. Statist. Data Anal. 56 3898–3908.Mathematical Reviews (MathSciNet): MR2957840
- [30] Parzen, E. (1962). On estimation of a probability density function and mode., Ann. Math. Statist. 33 1065–1076.Mathematical Reviews (MathSciNet): MR143282
Digital Object Identifier: doi:10.1214/aoms/1177704472
Project Euclid: euclid.aoms/1177704472 - [31] Perryman, M. A. C. et al. (1997)., The Hipparcos and Tycho Catalogues. European Space Agency.
- [32] Pewsey, A. (2006). Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution., Environ. Ecol. Stat. 13 257–269.Mathematical Reviews (MathSciNet): MR2242188
Digital Object Identifier: doi:10.1007/s10651-005-0010-4 - [33] Pukkila, T. M. and Rao, C. R. (1988). Pattern recognition based on scale invariant discriminant functions., Inform. Sci. 45 379–389.Mathematical Reviews (MathSciNet): MR952440
Digital Object Identifier: doi:10.1016/0020-0255(88)90012-6 - [34] Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function., Ann. Math. Statist. 27 832–837. Mathematical Reviews (MathSciNet): MR79873
Digital Object Identifier: doi:10.1214/aoms/1177728190
Project Euclid: euclid.aoms/1177728190 - [35] Scott, D. W. (1992)., Multivariate density estimation. John Wiley & Sons, New York.Mathematical Reviews (MathSciNet): MR1191168
- [36] Silverman, B. W. (1986)., Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London.Mathematical Reviews (MathSciNet): MR848134
- [37] Taylor, C. C. (2008). Automatic bandwidth selection for circular density estimation., Comput. Statist. Data Anal. 52 3493–3500.Mathematical Reviews (MathSciNet): MR2427365
- [38] Van Leeuwen, F. (2007)., Hipparcos, the new reduction of the raw data. Springer.
- [39] Wand, M. P. and Jones, M. C. (1995)., Kernel smoothing. Monographs on Statistics and Applied Probability 60. Chapman and Hall Ltd., London.Mathematical Reviews (MathSciNet): MR1319818
- [40] Watson, G. S. (1983)., Statistics on spheres. University of Arkansas Lecture Notes in the Mathematical Sciences, 6. John Wiley & Sons Inc., New York.Mathematical Reviews (MathSciNet): MR709262
The Institute of Mathematical Statistics and the Bernoulli Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Using Stopping Rules to Bound the Mean Integrated Squared Error in Density Estimation
Martinsek, Adam T., Annals of Statistics, 1992 - Asymptotics and optimal bandwidth for nonparametric estimation of density level sets
Qiao, Wanli, Electronic Journal of Statistics, 2020 - Formulae for Mean Integrated Squared Error of Nonlinear Wavelet-Based Density Estimators
Hall, Peter and Patil, Prakash, Annals of Statistics, 1995
- Using Stopping Rules to Bound the Mean Integrated Squared Error in Density Estimation
Martinsek, Adam T., Annals of Statistics, 1992 - Asymptotics and optimal bandwidth for nonparametric estimation of density level sets
Qiao, Wanli, Electronic Journal of Statistics, 2020 - Formulae for Mean Integrated Squared Error of Nonlinear Wavelet-Based Density Estimators
Hall, Peter and Patil, Prakash, Annals of Statistics, 1995 - Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting
Chacón, José E. and Duong, Tarn, Electronic Journal of Statistics, 2013 - Exact Mean Integrated Squared Error
Marron, J. S. and Wand, M. P., Annals of Statistics, 1992 - On bandwidth choice for density estimation with dependent data
Hall, Peter, Lahiri, Soumendra Nath, and Truong, Young K., Annals of Statistics, 1995 - INTEGRATED CROSS-VALIDATION FOR THE RANDOM DESIGN NONPARAMETRIC REGRESSION
Chang, Tzu-Kuei, Deng, Wen-Shuenn, Lin, Jung-Huei, and Chu, C. K., Taiwanese Journal of Mathematics, 2005 - Directional log-spline distributions
Ferreira, José T. A. S., Juárez, Miguel A., and Steel, Mark F. J., Bayesian Analysis, 2008 - Adaptive density estimation using the blockwise Stein method
Rigollet, Philippe, Bernoulli, 2006 - A Simple Root $n$ Bandwidth Selector
Jones, M. C., Marron, J. S., and Park, B. U., Annals of Statistics, 1991
