Electronic Journal of Statistics

Adaptive density estimation in the pile-up model involving measurement errors

Fabienne Comte and Tabea Rebafka

Full-text: Open access


Motivated by fluorescence lifetime measurements, this paper considers the problem of nonparametric density estimation in the pile-up model, where observations suffer also from measurement errors. In the pile-up model, an observation is defined as the minimum of a random number of i.i.d. variables following the target distribution. Adaptive nonparametric estimators are proposed for this pile-up model with measurement errors. Furthermore, oracle type risk bounds for the mean integrated squared error (MISE) are provided. Finally, the estimation method is assessed by a simulation study and the application to real fluorescence lifetime data.

Article information

Electron. J. Statist., Volume 6 (2012), 2002-2037.

First available in Project Euclid: 2 November 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G07: Density estimation 62N01: Censored data models

Adaptive nonparametric estimation biased data deconvolution fluorescence lifetimes projection estimator


Comte, Fabienne; Rebafka, Tabea. Adaptive density estimation in the pile-up model involving measurement errors. Electron. J. Statist. 6 (2012), 2002--2037. doi:10.1214/12-EJS737. https://projecteuclid.org/euclid.ejs/1351865116

Export citation


  • [1] Berberan-Santos, M. N., Bodunov, E. N., and Valeur, B. (2005a), “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential),”, Chemical Physics, 515, 171–182.
  • [2] Berberan-Santos, M. N., Bodunov, E. N., and Valeur, B. (2005b), “Mathematical functions for the analysis of luminescence decays with underlying distributions: 2. Becquerel (compressed hyperbola) and related decay functions,”, Chemical Physics, 317, 57–62.
  • [3] Birgé, L. and Massart, P. (1998), “Minimum contrast estimators on sieves: exponential bounds and rates of convergence,”, Bernoulli, 4, 329–375.
  • [4] Bissantz, N., Holzmann, H., and Munk, A. (2005), “Testing parametric assumptions on band- or time-limited signals under noise,”, IEEE Trans. Inform. Theory, 51, 3796–3805.
  • [5] Bissantz, N., Dümbgen, L., Holzmann, H., and Munk, A. (2007), “Non-parametric confidence bands in deconvolution density estimation,”, J. R. Stat. Soc. Ser. B Stat. Methodol., 69, 483–506.
  • [6] Brunel, E. and Comte, F. (2005), “Penalized contrast estimation of density and hazard rate with censored data,”, Sankhya, 67, 441–475.
  • [7] Brunel, E., Comte, F., and Guilloux, A. (2005), “Nonparametric density estimation in presence of bias and censoring,”, Test, 18, 166–194.
  • [8] Comte, F. and Genon-Catalot, V. (2010), “Nonparametric adaptive estimation for pure jump Lévy processes,”, Ann. Inst. Henri Poincaré Probab. Stat., 46, 595–617.
  • [9] Comte, F. and Lacour, C. (2011), “Data-driven density estimation in the presence of additive noise with unknown distribution,”, Journal of the Royal Statistical Society B, 73, 601–627.
  • [10] Comte, F., Rozenholc, Y., and Taupin, M.-L. (2006), “Penalized contrast estimator for adaptive density deconvolution,”, Canadian Journal of Statistics, 34, 431–452.
  • [11] Delaigle, A. and Gijbels, I. (2004), “Practical bandwidth selection in deconvolution kernel density estimation,”, Comput. Statist. Data Anal., 45, 249–267.
  • [12] Delaigle, A. and Meister, A. (2011), “Nonparametric function estimation under Fourier-oscillating noise,”, Statist. Sinica, 21, 1065–1092.
  • [13] Diggle, P. J. and Hall, P. (1993), “A Fourier approach to nonparametric deconvolution of a density estimate,”, J. Roy. Statist. Soc. Ser. B, 55, 523–531.
  • [14] Fan, J. (1991), “On the optimal rates of convergence for nonparametric deconvolution problems,”, Ann. Statist., 19, 1257–1272.
  • [15] Johnstone, I. M., Kerkyacharian, G., Picard, D., and Raimondo, M. (2004), “Wavelet deconvolution in a periodic setting,”, J. R. Stat. Soc. Ser. B Stat. Methodol., 66, 547–573.
  • [16] Klein, T. and Rio, E. (2005), “Concentration around the mean for maxima of empirical processes,”, Annals of Probability, 33, 1060–1077.
  • [17] Lakowicz, J. R. (1999), Principles of Fluorescence Spectroscopy, Academic/Plenum, New York.
  • [18] Massart, P. (1990), “The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality,”, Annals of Probability, 18, 1269–1283.
  • [19] Meyer, Y. (1990), Ondelettes et opérateurs, Hermann, Paris.
  • [20] O’Connor, D. V. and Phillips, D. (1984), Time-correlated single photon counting, Academic Press, London.
  • [21] Patting, M., Wahl, M., Kapusta, P., and Erdmann, R. (2007), “Dead-time effects in TCSPC data analysis,” in, Proceedings of SPIE, vol. 6583.
  • [22] Pensky, M. and Vidakovic, B. (1999), “Adaptive wavelet estimator for nonparametric density deconvolution,”, Ann. Statist., 27, 2033–2053.
  • [23] Rebafka, T., Roueff, F., and Souloumiac, A. (2010), “A corrected likelihood approach for the pile-up model with application to fluorescence lifetime measurements using exponential mixtures,”, The International Journal of Biostatistics, 6.
  • [24] Rebafka, T., Roueff, F., and Souloumiac, A. (2011), “Information bounds and MCMC parameter estimation for the pile-up model,”, Journal of Statistical Planning and Inference, 141, 1–16.
  • [25] Tsodikov, A. (2003), “A Generalized Self-Consistency Approach,”, Journal of the Royal Statistical Society. Series B (Statistical Methodology), 65, 759–774.
  • [26] Valeur, B. (2002), Molecular Fluorescence, Wiley-VCH, Weinheim.
  • [27] van Es, B., Gugushvili, S., and Spreij, P. (2007), “A kernel type nonparametric density estimator for decompounding,”, Bernoulli, 13, 672–694.