Electronic Journal of Statistics

Axiomatic arguments for decomposing goodness of fit according to Shapley and Owen values

Frank Huettner and Marco Sunder

Full-text: Open access

Abstract

We advocate the decomposition of goodness of fit into contributions of (groups of) regressor variables according to the Shapley value or—if regressors are exogenously grouped—the Owen value because of the attractive axioms associated with these values. A wage regression model with German data illustrates the method.

Article information

Source
Electron. J. Statist. Volume 6 (2012), 1239-1250.

Dates
First available in Project Euclid: 9 July 2012

Permanent link to this document
https://projecteuclid.org/euclid.ejs/1341842804

Digital Object Identifier
doi:10.1214/12-EJS710

Mathematical Reviews number (MathSciNet)
MR2988446

Zentralblatt MATH identifier
1295.62094

Subjects
Primary: 62J05: Linear regression 62P20: Applications to economics [See also 91Bxx] 91A12: Cooperative games

Keywords
Shapley value Owen value variance decomposition regression games GSOEP

Citation

Huettner, Frank; Sunder, Marco. Axiomatic arguments for decomposing goodness of fit according to Shapley and Owen values. Electron. J. Statist. 6 (2012), 1239--1250. doi:10.1214/12-EJS710. https://projecteuclid.org/euclid.ejs/1341842804


Export citation

References

  • [1] Algaba, E., Bilbao, J. M., van den Brink, R. and Jiménez-Losada, A. (2003). Axiomatizations of the Shapley value for cooperative games on antimatroids., Mathematical Methods of Operations Research 57 49–65.
  • [2] Anger, S. and Heineck, G. (2010). Cognitive abilities and earnings—first evidence for Germany., Applied Economics Letters 17 699–702.
  • [3] Chevan, A. and Sutherland, M. (1991). Hierarchical partitioning., American Statistician 45 90–96.
  • [4] Derks, J. and Peters, H. (1993). A Shapley value for games with restricted coalitions., International Journal of Game Theory 21 351–360.
  • [5] Feldman, B. (2007). A theory of attribution., MPRA paper 3349.
  • [6] Grömping, U. (2006). Relative importance for linear regression in R: the package relaimpo., Journal of Statistical Software 17 1–27.
  • [7] Grömping, U. (2007). Estimators of relative importance in linear regression based on variance decomposition., The American Statistician 61 139–147.
  • [8] Isreali, O. (2007). A Shapley-based decomposition of the R-square of a linear regression., Journal of Economic Inequality 5 199–212.
  • [9] Johnson, J. W. and LeBreton, J. M. (2004). History and use of relative importance indices in organizational research., Organizational Research Methods 7 238.
  • [10] Khmelnitskaya, A. B. and Yanovskaya, E. B. (2007). Owen coalitional value without additivity axiom., Mathematical Methods of Operations Research 66 255–261.
  • [11] Lang, F. R. (2005). Erfassung des kognitiven Leistungspotenzials und der ‘Big Five’ mit Computer-Assisted-Personal-Inverviewing (CAPI): Zur Reliabilität und Validität zweier ultrakurzer Tests und des BFI-S. Research note, DIW, Berlin.
  • [12] McCloskey, D. M. and Ziliak, S. T. (1996). The standard error of regressions., Journal of Economic Literature 34 97–114.
  • [13] Ortmann, K. (2000). The proportional value for positive cooperative games., Mathematical Methods of Operations Research 51 235–248.
  • [14] Owen, G. (1977). Values of games with a priori unions. In, Essays in Mathematical Economics & Game Theory (R. Henn and O. Moeschlin, eds.) 76–88. Springer, Berlin et al.
  • [15] Pintér, M. (2011). Regression games., Annals of Operations Research 186 1–12.
  • [16] Sastre, M. and Trannoy, A. (2002). Shapley inequality decomposition by factor components: Some methodological issues., Journal of Economics 9 51–89.
  • [17] Shapley, L. S. (1953). A value for $n$-person games. In, Contributions to the Theory of Games, (H. W. Kuhn and A. W. Tucker, eds.) II 307–317. Princeton University Press, Princeton.
  • [18] Shorrocks, A. (forthcoming). Decomposition procedures for distributional analysis: a unified framework based on the Shapley value., Journal of Economic Inequality.
  • [19] StataCorp, (2009)., Stata Statistical Software: Release 11. College Station, TX: StataCorp LP.
  • [20] Stufken, J. (1992). On hierarchical partitioning., American Statistician 46 70–71.
  • [21] van den Brink, R. and Gilles, R. P. (1996). Axiomatizations of the conjunctive permission value for games with permission structures., Games and Economic Behavior 12 113–126.
  • [22] Wagner, G. G., Frick, J. R. and Schupp, J. (2007). The German socio-economic panel study (SOEP)—scope, evolution and enhancements., Schmollers Jahrbuch 127 139–170.
  • [23] Winter, E. (1989). A value for cooperative games with levels structure of cooperation., International Journal of Game Theory 18 227–240.
  • [24] Young, H. P. (1985). Monotonic solutions of cooperative games., International Journal of Game Theory 14 65–72.