Electronic Journal of Statistics

The Bernstein-Von-Mises theorem under misspecification

B.J.K. Kleijn and A.W. van der Vaart

Full-text: Open access


We prove that the posterior distribution of a parameter in misspecified LAN parametric models can be approximated by a random normal distribution. We derive from this that Bayesian credible sets are not valid confidence sets if the model is misspecified. We obtain the result under conditions that are comparable to those in the well-specified situation: uniform testability against fixed alternatives and sufficient prior mass in neighbourhoods of the point of convergence. The rate of convergence is considered in detail, with special attention for the existence and construction of suitable test sequences. We also give a lemma to exclude testable model subsets which implies a misspecified version of Schwartz’ consistency theorem, establishing weak convergence of the posterior to a measure degenerate at the point at minimal Kullback-Leibler divergence with respect to the true distribution.

Article information

Electron. J. Statist., Volume 6 (2012), 354-381.

First available in Project Euclid: 19 March 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62F15: Bayesian inference 62F25: Tolerance and confidence regions 62F12: Asymptotic properties of estimators

Misspecification posterior distribution credible set limit distribution rate of convergence consistency


Kleijn, B.J.K.; van der Vaart, A.W. The Bernstein-Von-Mises theorem under misspecification. Electron. J. Statist. 6 (2012), 354--381. doi:10.1214/12-EJS675. https://projecteuclid.org/euclid.ejs/1332162333

Export citation


  • [1] S. Bernstein, Theory of probability, Moskow (1917).
  • [2] R. Berk, Limiting behaviour of posterior distributions when the model is incorrect, Ann. Math. Statist. 37 (1966), 51–58.
  • [3] R. Berk, Consistency of a posteriori, Ann. Math. Statist. 41 (1970), 894–906.
  • [4] P. Bickel and J. Yahav, Some contributions to the asymptotic theory of Bayes solutions, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 11 (1969), 257–276.
  • [5] O. Bunke and X. Milhaud, Asymptotic behavior of Bayes estimates under possibly incorrect models, Ann. Statist. 26 (1998), 617–644.
  • [6] A. Dawid, On the limiting normality of posterior distribution, Proc. Canad. Phil. Soc. B67 (1970), 625–633.
  • [7] S. Ghosal, J. Ghosh and A. van der Vaart, Convergence rates of posterior distributions, Ann. Statist. 28 (2000), 500–531.
  • [8] P. Huber, The behavior of maximum likelihood estimates under nonstandard conditions, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1, 221–233. University of California Press, Berkeley (1967).
  • [9] B. Kleijn and A. van der Vaart, Misspecification in Infinite-Dimensional Bayesian Statistics. Ann. Statist. 34 (2006), 837–877.
  • [10] P. Laplace, Théorie Analytique des Probabilités (3rd edition), Courcier, Paris (1820).
  • [11] L. Le Cam, On some asymptotic properties of maximum-likelihood estimates and related Bayes estimates, University of California Publications in Statistics 1 (1953), 277–330.
  • [12] L. Le Cam and G. Yang, Asymptotics in Statistics: some basic concepts, Springer, New York (1990).
  • [13] E.L. Lehmann., Theory of Point Estimation, John Wiley & Sons, New York.
  • [14] R. Von Mises, Wahrscheinlichkeitsrechnung, Springer Verlag, Berlin (1931).
  • [15] D. Pollard, Convergence of Stochastic Processes, Springer, New York (1984).
  • [16] L. Schwartz, On Bayes procedures, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 4 (1965), 10–26.
  • [17] X. Shen and L. Wasserman, Rates of convergence of posterior distributions, Ann. Statist. 29 (2001), 687–714.
  • [18] A. van der Vaart, Asymptotic Statistics, Cambridge University Press, Cambridge (1998).
  • [19] A. Walker, On the asymptotic behaviour of posterior distributions, J. Roy. Statist. Soc. B31 (1969), 80–88.