Electronic Journal of Statistics

Nonparametric goodness-of fit testing in quantum homodyne tomography with noisy data

Katia Meziani

Full-text: Open access


In the framework of quantum optics, we study the problem of goodness-of-fit testing in a severely ill-posed inverse problem. A novel testing procedure is introduced and its rates of convergence are investigated under various smoothness assumptions. The procedure is derived from a projection-type estimator, where the projection is done in $\mathbb{L}_{2}$ distance on some suitably chosen pattern functions. The proposed methodology is illustrated with simulated data sets.

Article information

Electron. J. Statist., Volume 2 (2008), 1195-1223.

First available in Project Euclid: 16 December 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G05: Estimation 62G10: Hypothesis testing 62G20: Asymptotic properties
Secondary: 81V80: Quantum optics

Density matrix Goodness-of fit test Minimax rates Nonparametric test Pattern Functions estimation Quantum homodyne tomography Wigner function


Meziani, Katia. Nonparametric goodness-of fit testing in quantum homodyne tomography with noisy data. Electron. J. Statist. 2 (2008), 1195--1223. doi:10.1214/08-EJS286. https://projecteuclid.org/euclid.ejs/1229450667

Export citation


  • [1] D. L. Allen. Hypothesis testing using an, L1-distance bootstrap. The American Statistician, 51(2):145–150, 1997..
  • [2] N. H. Anderson, P. Hall, and D. M. Titterington. Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates., Journal of Multivariate Analysis, 50(1):41–54, 1994..
  • [3] L. Artiles, R. Gill, and M. Guţă. An invitation to quantum tomography., J. Royal Statist. Soc. B (Methodological), 67:109–134, 2005..
  • [4] J. M. Aubry, C. Butucea, and K. Meziani. State estimation in quantum homodyne tomography with noisy data. To appear in Inverse Problem http://arxiv.org/abs /0804.2434, 2008.
  • [5] Y. Baraud. Non asymptotic minimax rates of testing in signal detection., Bernoulli, 8, 2002..
  • [6] P. J. Bickel and M. Rosenblatt. On some global measures of the deviations of density function estimates., Annals of Statistics, 1(6) :1071–1095, 1973..
  • [7] G. Breitenbach, S. Schiller, and J. Mlynek. Measurement of the quantum state of the squeezed light., Nature, 387:471–475, 1997.
  • [8] C. Butucea. Goodness-of-fit testing and quadratic functional estimation from indirect observations., The Annals of Statistics, 35(5) :1907–1930, 2007..
  • [9] C. Butucea, M. Guţă, and L. Artiles. Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data., Ann. Statist., 35(2):465–494, 2007..
  • [10] G. M. D’Ariano. Tomographic measurement of the density matrix of the radiation field., Quantum Semiclass. Optics, 7:693–704, 1995.
  • [11] G. M. D’Ariano. Tomographic methods for universal estimation in quantum optics. In, International School of Physics Enrico Fermi, volume 148. IOS Press, 2002.
  • [12] G. M. D’Ariano, U. Leonhardt, and H. Paul. Homodyne detection of the density matrix of the radiation field., Phys. Rev. A, 52: R1801–R1804, 1995.
  • [13] G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris. Detection of the density matrix through optical homodyne tomography without filtered back projection., Phys. Rev. A, 50 :4298–4302, 1994.
  • [14] G.M. D’Ariano, L. Maccone, and M. F. Sacchi., Homodyne tomography and the reconstruction of quantum states of light, chapter of the book “Quantum Information with Continuous Variables of Atoms and Light”. Imperial College Press, 2007. http://arxiv.org/abs/quant-ph/0507078.
  • [15] M. Fromont and B. Laurent. Adaptive goodness-of-fit tests in a density model., Annals of Statistics, 34(2), 2006..
  • [16] M. Guţă and L. Artiles. Minimax estimation of the Wigner in quantum homodyne tomography with ideal detectors., Math. Methods Statist., 16(1):1–15, 2007..
  • [17] Y. I. Ingster and I. A. Suslina., Nonparametric Goodness-of-fit Testing under Gaussian Models. Lecture Notes in Statistics. Springer, 2003..
  • [18] U. Leonhardt., Measuring the Quantum State of Light. Cambridge University Press, 1997.
  • [19] U. Leonhardt, M. Munroe, T. Kiss, T. Richter, and M. G. Raymer. Sampling of photon statistics and density matrix using homodyne detection., Opt. Commun., 127:144–160, 1996.
  • [20] U. Leonhardt, H. Paul, and G. M. D’Ariano. Tomographic reconstruction of the density matrix via pattern functions., Phys. Rev. A, 52 :4899–4907, 1995.
  • [21] O. V. Lepski and A. B. Tsybakov. Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point., Probab. Theory Related Fields, 117(1):17–48, 2000..
  • [22] K. Meziani. Nonparametric estimation of the purity of a quantum state in quantum homodyne tomography with noisy data., Mathematical Methods of Statistics, 16(4):1–15, 2007..
  • [23] Y. Nikitin., Asymptotic Efficiency of Nonparametric Tests. Cambridge University Press, 1995..
  • [24] M. Nussbaum and A. Szkola. A lower bound of Chernoff type for symmetric quantum hypothesis testing., to appear in Ann. Statist., 2008. http://arxiv.org/abs/quant-ph/0607216v1.
  • [25] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier. Generating optical Schrödinger kittens for quantum information processing., Science, 312 (5770):83–86, 2006.
  • [26] C. Pouet. On testing nonparametric hypotheses for analytic regression functions in Gaussian noise., Math. Methods Statist., 8(4):536–549 (2000), 1999..
  • [27] T. Richter. Pattern functions used in tomographic reconstruction of photon statistics revisited., Phys. Lett. A, 211:327–330, 1996.
  • [28] T. Richter. Realistic pattern functions for optical homodyne tomography and determination of specific expectation values., Physical Review A, 61 (063819), 2000.
  • [29] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum., Phys. Rev. Lett., 70 :1244–1247, 1993.
  • [30] V. G. Spokoiny. Adaptive hypothesis testing using wavelets., Annals of Statistics, 24(6), 1996..