Electronic Journal of Probability

SPDE limit of weakly inhomogeneous ASEP

Ivan Corwin and Li-Cheng Tsai

Full-text: Open access


We study ASEP in a spatially inhomogeneous environment on a torus $ \mathbb {T}^{(N)} = \mathbf {Z}/N\mathbf {Z}$ of $ N $ sites. A given inhomogeneity $ \widetilde { \mathbb {a} } (x)\in (0,\infty ) $, $ x\in \mathbb {T}^{(N)} $, perturbs the overall asymmetric jumping rates $ r<\ell \in (0,1) $ at bonds, so that particles jump from site $x$ to $x+1$ with rate $r \widetilde { \mathbb {a} } (x)$ and from $x+1$ to $x$ with rate $\ell \widetilde { \mathbb {a} } (x)$ (subject to the exclusion rule in both cases). Under the limit $ N\to \infty $, we suitably tune the asymmetry $ (\ell -r) $ to zero like $N^{-\frac {1}{2}}$ and the inhomogeneity $ \widetilde { \mathbb {a} } $ to unity, so that the two compete on equal footing. At the level of the Gärtner (or microscopic Hopf–Cole) transform, we show convergence to a new SPDE — the Stochastic Heat Equation with a mix of spatial and spacetime multiplicative noise. Equivalently, at the level of the height function we show convergence to the Kardar–Parisi–Zhang equation with a mix of spatial and spacetime additive noise.

Our method applies to a general class of $ \widetilde { \mathbb {a} } (x) $, which, in particular, includes i.i.d., fractional-Brownian-motion like, and periodic inhomogeneities. The key technical component of our analysis consists of a host of estimates on the kernel of the semigroup $ \mathcal {Q} (t):=e^{t \mathcal {H} } $ for a Hill-type operator $ \mathcal {H} := \frac {1}{2}\partial _{xx} + \mathcal {A} '(x) $, and its discrete analog, where $ \mathcal {A} $ (and its discrete analog) is a generic Hölder continuous function.

Article information

Electron. J. Probab., Volume 25 (2020), paper no. 156, 55 pp.

Received: 4 May 2020
Accepted: 29 November 2020
First available in Project Euclid: 24 December 2020

Permanent link to this document

Digital Object Identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82C22: Interacting particle systems [See also 60K35]

interacting particle systems inhomogeneous enviornments stochastic partial differential equations

Creative Commons Attribution 4.0 International License.


Corwin, Ivan; Tsai, Li-Cheng. SPDE limit of weakly inhomogeneous ASEP. Electron. J. Probab. 25 (2020), paper no. 156, 55 pp. doi:10.1214/20-EJP565. https://projecteuclid.org/euclid.ejp/1608779097

Export citation


  • [ACQ11] G. Amir, I. Corwin, and J. Quastel. Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions. Comm Pure Appl Math, 64:466–537, 2011.
  • [ADS15] S. Andres, J.-D. Deuschel, and M. Slowik. Invariance principle for the random conductance model in a degenerate ergodic environment. Ann Probab, 43(4):1866–1891, 2015.
  • [AN19] S. Andres and S. Neukamm. Berry–Esseen theorem and quantitative homogenization for the random conductance model with degenerate conductances. Stochastics and Partial Differential Equations: Analysis and Computations, 7(2):240–296, 2019.
  • [Aro67] D. G. Aronson. Bounds for the fundamental solution of a parabolic equation. Bulletin of the American Mathematical society, 73(6):890–896, 1967.
  • [BAC06] G. Ben Arous and J. Cern?. Dynamics of trap models. In Mathematical statistical physics, pages 331–394. Elsevier BV, Amsterdam, 2006.
  • [BACCR15] G. Ben Arous, M. Cabezas, J. Cern?, and R. Royfman. Randomly trapped random walks. Ann Probab, 43(5):2405–2457, 2015.
  • [BB03] E. Bertin and J.-P. Bouchaud. Subdiffusion and localization in the one-dimensional trap model. Physical Review E, 67(2):026128, 2003.
  • [BBHK08] N. Berger, M. Biskup, C. E. Hoffman, and G. Kozma. Anomalous heat-kernel decay for random walk among bounded random conductances. In Annales de l’IHP Probabilités et statistiques, volume 44, pages 374–392, 2008.
  • [BCS14] A. Borodin, I. Corwin, and T. Sasamoto. From duality to determinants for $q$-TASEP and ASEP. Ann Probab, 42(6):2314–2382, 2014.
  • [BD10] M. T. Barlow and J.-D. Deuschel. Invariance principle for the random conductance model with unbounded conductances. Ann Probab, 38(1):234–276, 2010.
  • [BDCKY15] I. Benjamini, H. Duminil-Copin, G. Kozma, and A. Yadin. Disorder, entropy and harmonic functions. Ann Probab, 43(5):2332–2373, 2015.
  • [BG97] L. Bertini and G. Giacomin. Stochastic Burgers and KPZ equations from particle systems. Comm Math Phys, 183(3):571–607, 1997.
  • [Bis11] M. Biskup. Recent progress on the random conductance model. Probability Surveys, 8, 2011.
  • [Bou92] J.-P. Bouchaud. Weak ergodicity breaking and aging in disordered systems. Journal de Physique I, 2(9):1705–1713, 1992.
  • [BP17] A. Borodin and L. Petrov. Inhomogeneous exponential jump model. Probab Theory Related Fields, pages 1–63, 2017.
  • [BSS14] R. Basu, V. Sidoravicius, and A. Sly. Last passage percolation with a defect line and the solution of the slow bond problem. arXiv:1408.3464 , 2014.
  • [Cab15] M. Cabezas. Sub-Gaussian bound for the one-dimensional Bouchaud trap model. Braz J Probab Stat, 29(1):112–131, 2015.
  • [Cal15] J. Calder. Directed last passage percolation with discontinuous weights. J Stat Phys, 158(4):903–949, 2015.
  • [Cer06] J. Cern?. The behaviour of aging functions in one-dimensional Bouchaud’s trap model. Commun Math Phys, 261(1):195–224, 2006.
  • [CGST20] I. Corwin, P. Ghosal, H. Shen, and L.-C. Tsai. Stochastic PDE limit of the six vertex model. Commun Math Phys, pages 1–94, 2020.
  • [CHK19] D. Croydon, B. Hambly, and T. Kumagai. Heat kernel estimates for FIN processes associated with resistance forms. Stochastic Process Appl, 129(9):2991–3017, 2019.
  • [CLY81] S. Y. Cheng, P. Li, and S.-T. Yau. On the upper estimate of the heat kernel of a complete Riemannian manifold. Amer J Math, 103(5):1021–1063, 1981.
  • [CM94] R. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermittency, volume 518. American Mathematical Soc., 1994.
  • [CM99] S. Cambronero and H. P. McKean. The ground state eigenvalue of Hill’s equation with white noise potential. Comm Pure Appl Math, 52(10):1277–1294, 1999.
  • [Cor12] I. Corwin. The Karder-Parisi-Zhang equation and universality class. Random Matrices: Theory Appl, 01(01):1130001, 2012.
  • [CR97] P. Covert and F. Rezakhanlou. Hydrodynamic limit for particle systems with nonconstant speed parameter. J Stat Phys, 88(1-2):383–426, 1997.
  • [CRR06] S. Cambronero, B. Rider, and J. Ramírez. On the shape of the ground state eigenvalue density of a random Hill’s equation. Comm Pure Appl Math, 59(7):935–976, 2006.
  • [CST18] I. Corwin, H. Shen, and L.-C. Tsai. ASEP$(q,j)$ converges to the KPZ equation. Ann Inst Henri Poincaré (B) Probab Stat, 54(2):995–1012, 2018.
  • [DF19] J.-D. Deuschel and R. Fukushima. Quenched tail estimate for the random walk in random scenery and in random layered conductance. Stochastic Process Appl, 129(1):102–128, 2019.
  • [DF20] J.-D. Deuschel and R. Fukushima. Quenched tail estimate for the random walk in random scenery and in random layered conductance II. Electron J Probab, 25, 2020.
  • [DL17] L. Dumaz and C. Labbé. Localization of the continuous Anderson hamiltonian in 1-d. Probab Theory Related Fields, pages 1–67, 2017.
  • [DT16] A. Dembo and L.-C. Tsai. Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation. Comm Math Phys, 341(1):219–261, 2016.
  • [EJ17] E. Emrah and C. Janjigian. Large deviations for some corner growth models with inhomogeneity. Markov Processes Relat Fields, 23(2):267–312, 2017.
  • [Emr16] E. Emrah. Limit shapes for inhomogeneous corner growth models with exponential and geometric weights. Electron Commun Probab, 21, 2016.
  • [FGS16] T. Franco, P. Gonçalves, and M. Simon. Crossover to the stochastic Burgers equation for the WASEP with a slow bond. Commun Math Phys, 346(3):801–838, 2016.
  • [FIN99] L. R. G. Fontes, M. Isopi, and C. M. Newman. Chaotic time dependence in a disordered spin system. Probab Theory Related Fields, 115(3):417–443, 1999.
  • [FL60] H. Frisch and S. Lloyd. Electron levels in a one-dimensional random lattice. Phys Rev, 120(4):1175, 1960.
  • [FN77] M. Fukushima and S. Nakao. On spectra of the Schrödinger operator with a white Gaussian noise potential. Probab Theory Related Fields, 37(3):267–274, 1977.
  • [Fol11] M. Folz. Gaussian upper bounds for heat kernels of continuous time simple random walks. Electron J Probab, 16:1693–1722, 2011.
  • [Gär87] J. Gärtner. Convergence towards Burger’s equation and propagation of chaos for weakly asymmetric exclusion processes. Stoch Proc Appl, 27:233–260, 1987.
  • [GH18] Y. Gu and J. Huang. Chaos expansion of 2D parabolic Anderson model. Electron Commun Probab, 23(26), 2018.
  • [GIP15] M. Gubinelli, P. Imkeller, and N. Perkowski. Paracontrolled distributions and singular PDEs. Forum Math Pi, 3:e6, 75, 2015.
  • [GJ14] P. Gonçalves and M. Jara. Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal., 212(2):597–644, 2014.
  • [GP17] M. Gubinelli and N. Perkowski. KPZ reloaded. Commun Math Phys, 349(1):165–269, 2017.
  • [GP18] M. Gubinelli and N. Perkowski. Energy solutions of KPZ are unique. J Amer Math Soc, 31:427–471, 2018.
  • [Gri92] A. A. Grigor’yan. The heat equation on noncompact Riemannian manifolds. Mathematics of the USSR-Sbornik, 72(1):47, 1992.
  • [Gru08] G. Grubb. Distributions and operators, volume 252. Springer Science & Business Media, 2008.
  • [GTW02a] J. Gravner, C. A. Tracy, and H. Widom. Fluctuations in the composite regime of a disordered growth model. Commun Math Phys, 229(3):433–458, 2002.
  • [GTW02b] J. Gravner, C. A. Tracy, and H. Widom. A growth model in a random environment. Ann Probab, pages 1340–1368, 2002.
  • [Hai13] M. Hairer. Solving the KPZ equation. Ann Math, 178(2):559–664, 2013.
  • [Hal65] B. I. Halperin. Green’s functions for a particle in a one-dimensional random potential. Phys Rev, 139(1A):A104, 1965.
  • [Jan97] S. Janson. Gaussian Hilbert spaces, volume 129. Cambridge university press, 1997.
  • [JL92] S. A. Janowsky and J. L. Lebowitz. Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process. Phys Rev A, 45(2):618, 1992.
  • [Kho09] D. Khoshnevisan. A primer on stochastic partial differential equations. In A minicourse on stochastic partial differential equations, pages 1–38. Springer, 2009.
  • [Kön16] W. König. The Parabolic Anderson Model: Random Walk in Random Potential. Birkhäuser, 2016.
  • [Kup16] A. Kupiainen. Renormalization group and stochastic PDEs. Ann. H. Poincaré, 17(3), 2016.
  • [Lab17] C. Labbé. Weakly asymmetric bridges and the KPZ equation. Commun Math Phys, 353(3):1261–1298, 2017.
  • [Lig12] T. M. Liggett. Interacting particle systems, volume 276. Springer Science & Business Media, 2012.
  • [LS12] H. Lin and T. Seppäläinen. Properties of the limit shape for some last-passage growth models in random environments. Stochastic Process Appl, 122(2):498–521, 2012.
  • [LY86] P. Li and S. T. Yau. On the parabolic kernel of the schrödinger operator. Acta Math, 156(1):153–201, 1986.
  • [McK77] H. McKean. $-\Delta $ plus a bad potential. J Math Phys, 18(6):1277–1279, 1977.
  • [McK94] H. McKean. A limit law for the ground state of Hill’s equation. J Stat Phys, 74(5-6):1227–1232, 1994.
  • [Nas58] J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer J math, 80(4):931–954, 1958.
  • [Qua11] J. Quastel. Introduction to KPZ. Curr Dev Math, 1, 2011.
  • [RT08] L. Rolla and A. Teixeira. Last passage percolation in macroscopically inhomogeneous media. Electron Commun Probab, 13:131–139, 2008.
  • [SC02] L. Saloff-Coste. Aspects of Sobolev-type inequalities, volume 289. Cambridge University Press, 2002.
  • [Sim79] B. Simon. Functional integration and quantum physics, volume 86. Academic press, 1979.
  • [Sim82] B. Simon. Schrödinger semigroups. Bulletin of the American Mathematical Society, 7(3):447–526, 1982.
  • [Wal86] J. B. Walsh. An introduction to stochastic partial differential equations. In École d’Été de Probabilités de Saint Flour XIV-1984, pages 265–439. Springer, 1986.