Electronic Journal of Probability

A stochastic sewing lemma and applications

Khoa Lê

Full-text: Open access

Abstract

We introduce a stochastic version of Gubinelli’s sewing lemma ([18]), providing a sufficient condition for the convergence in moments of some random Riemann sums. Compared with the deterministic sewing lemma, adaptiveness is required and the regularity restriction is improved by a half. The limiting process exhibits a Doob-Meyer-type decomposition. Relations with Itô calculus are established. To illustrate further potential applications, we use the stochastic sewing lemma in studying stochastic differential equations driven by Brownian motions or fractional Brownian motions with irregular drifts.

Article information

Source
Electron. J. Probab., Volume 25 (2020), paper no. 38, 55 pp.

Dates
Received: 27 October 2018
Accepted: 6 March 2020
First available in Project Euclid: 31 March 2020

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1585620093

Digital Object Identifier
doi:10.1214/20-EJP442

Subjects
Primary: 60H10: Stochastic ordinary differential equations [See also 34F05]
Secondary: 60H05: Stochastic integrals 60L20

Keywords
sewing lemma Doob-Meyer decomposition rough paths regularization by noise stochastic differential equations fractional Brownian motion additive functional chaos expansion

Rights
Creative Commons Attribution 4.0 International License.

Citation

Lê, Khoa. A stochastic sewing lemma and applications. Electron. J. Probab. 25 (2020), paper no. 38, 55 pp. doi:10.1214/20-EJP442. https://projecteuclid.org/euclid.ejp/1585620093


Export citation

References

  • [1] D. Baños, T. Nilssen, and F. Proske, Strong existence and higher order Fréchet differentiability of stochastic flows of fractional Brownian motion driven SDE’s with singular drift, J. Dyn. Diff. Equat. (2019), 1–48.
  • [2] R. F. Bass and Z.-Q. Chen, Brownian motion with singular drift, Ann. Probab. 31 (2003), no. 2, 791–817.
  • [3] D. L. Burkholder, B. J. Davis, and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, (1972), 223–240.
  • [4] O. Butkovsky, K. Dareiotis, and M. Gerencsér, Approximation of sdes – a stochastic sewing approach, 2019.
  • [5] G. Cannizzaro and K. Chouk, Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential, Ann. Probab. 46 (2018), no. 3, 1710–1763.
  • [6] R. Catellier and M. Gubinelli, Averaging along irregular curves and regularisation of ODEs, Stochastic Process. Appl. 126 (2016), no. 8, 2323–2366.
  • [7] A. M. Davie, Uniqueness of solutions of stochastic differential equations, Int. Math. Res. Not. IMRN (2007), no. 24, Art. ID rnm124, 26.
  • [8] F. Delarue and R. Diel, Rough paths and 1d SDE with a time dependent distributional drift: application to polymers, Probab. Theory Related Fields 165 (2016), no. 1-2, 1–63.
  • [9] J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953.
  • [10] S. N. Ethier and T. G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986, Characterization and convergence.
  • [11] D. Feyel and A. de La Pradelle, Curvilinear integrals along enriched paths, Electron. J. Probab. 11 (2006), no. 34, 860–892.
  • [12] F. Flandoli, M. Gubinelli, and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math. 180 (2010), no. 1, 1–53.
  • [13] F. Flandoli, E. Issoglio, and F. Russo, Multidimensional stochastic differential equations with distributional drift, Trans. Amer. Math. Soc. 369 (2017), no. 3, 1665–1688.
  • [14] F. Flandoli, F. Russo, and J. Wolf, Some SDEs with distributional drift. I. General calculus, Osaka J. Math. 40 (2003), no. 2, 493–542.
  • [15] P. K. Friz and M. Hairer, A course on rough paths, Universitext, Springer, Cham, 2014, With an introduction to regularity structures.
  • [16] P. K. Friz and N. B. Victoir, Multidimensional stochastic processes as rough paths, Cambridge Studies in Advanced Mathematics, vol. 120, Cambridge University Press, Cambridge, 2010, Theory and applications.
  • [17] A. M. Garsia, E. Rodemich, and H. Rumsey, Jr., A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J. 20 (1970/1971), 565–578.
  • [18] M. Gubinelli, Controlling rough paths, J. Funct. Anal. 216 (2004), no. 1, 86–140.
  • [19] M. Hairer, A theory of regularity structures, Invent. Math. 198 (2014), no. 2, 269–504.
  • [20] M. Hairer and C. Labbé, A simple construction of the continuum parabolic Anderson model on $\mathbf{R} ^{2}$, Electron. Commun. Probab. 20 (2015), no. 43, 11.
  • [21] M. Hairer and X.-M. Li, Averaging dynamics driven by fractional brownian motion, arXiv preprint arXiv:1902.11251 (2019).
  • [22] Y. Hu, Itô-Wiener chaos expansion with exact residual and correlation, variance inequalities, J. Theoret. Probab. 10 (1997), no. 4, 835–848.
  • [23] Y. Hu and K. Le, A multiparameter Garsia-Rodemich-Rumsey inequality and some applications, Stochastic Process. Appl. 123 (2013), no. 9, 3359–3377.
  • [24] Y. Hu and K. Lê, Nonlinear Young integrals and differential systems in Hölder media, Trans. Amer. Math. Soc. 369 (2017), no. 3, 1935–2002.
  • [25] Y. Hu, K. Lê, and L. Mytnik, Stochastic differential equation for Brox diffusion, Stochastic Process. Appl. 127 (2017), no. 7, 2281–2315.
  • [26] Y. Hu and D. Nualart, Differential equations driven by Hölder continuous functions of order greater than 1/2, Stochastic analysis and applications, Abel Symp., vol. 2, Springer, Berlin, 2007, pp. 399–413.
  • [27] T. Hytönen, J. van Neerven, M. Veraar, and L. Weis, Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 63, Springer, Cham, 2016.
  • [28] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, second ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991.
  • [29] N. V. Krylov and E. Priola, Elliptic and parabolic second-order PDEs with growing coefficients, Comm. Partial Differential Equations 35 (2010), no. 1, 1–22.
  • [30] N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields 131 (2005), no. 2, 154–196.
  • [31] T. J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), no. 2, 215–310.
  • [32] T. J. Lyons, M. Caruana, and T. Lévy, Differential equations driven by rough paths, Lecture Notes in Mathematics, vol. 1908, Springer, Berlin, 2007, Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004.
  • [33] B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968), 422–437.
  • [34] M. B. Marcus and J. Rosen, Markov processes, Gaussian processes, and local times, Cambridge Studies in Advanced Mathematics, vol. 100, Cambridge University Press, Cambridge, 2006.
  • [35] Y. Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992, Translated from the 1990 French original by D. H. Salinger.
  • [36] D. Nualart, The Malliavin calculus and related topics, second ed., Probability and its Applications (New York), Springer-Verlag, Berlin, 2006.
  • [37] D. Nualart and Y. Ouknine, Regularization of differential equations by fractional noise, Stochastic Process. Appl. 102 (2002), no. 1, 103–116.
  • [38] D. Nualart and Y. Ouknine, Stochastic differential equations with additive fractional noise and locally unbounded drift, Stochastic inequalities and applications, Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 353–365.
  • [39] D. Revuz and M. Yor, Continuous martingales and Brownian motion, third ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999.
  • [40] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.
  • [41] A. J. Veretennikov, On strong solutions and explicit formulas for solutions of stochastic integral equations, Sbornik: Mathematics 39 (1981), no. 3, 387–403.
  • [42] A. J. Veretennikov and N. V. Krylov, On explicit formulas for solutions of stochastic equations, Mathematics of the USSR-Sbornik 29 (1976), no. 2, 239.
  • [43] T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ. 11 (1971), 155–167.
  • [44] P. Yaskov, Extensions of the sewing lemma with applications, Stochastic Process. Appl. 128 (2018), no. 11, 3940–3965.
  • [45] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), no. 1, 251–282.