Electronic Journal of Probability

The seed bank coalescent with simultaneous switching

Jochen Blath, Adrián González Casanova, Noemi Kurt, and Maite Wilke-Berenguer

Full-text: Open access

Abstract

We introduce a new Wright-Fisher type model for seed banks incorporating “simultaneous switching”, which is motivated by recent work on microbial dormancy ([21], [28]). We show that the simultaneous switching mechanism leads to a new jump-diffusion limit for the scaled frequency processes, extending the classical Wright-Fisher and seed bank diffusion limits. We further establish a new dual coalescent structure with multiple activation and deactivation events of lineages. While this seems reminiscent of multiple merger events in general exchangeable coalescents, it actually leads to an entirely new class of coalescent processes with unique qualitative and quantitative behaviour. To illustrate this, we provide a novel kind of condition for coming down from infinity for these coalescents, applying a recent approach of Griffiths [12].

Article information

Source
Electron. J. Probab., Volume 25 (2020), paper no. 27, 21 pp.

Dates
Received: 14 February 2019
Accepted: 8 December 2019
First available in Project Euclid: 21 February 2020

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1582254383

Digital Object Identifier
doi:10.1214/19-EJP401

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 92D10: Genetics {For genetic algebras, see 17D92}

Keywords
seed banks dormancy coalescent simultaneous switching coming down from infinity

Rights
Creative Commons Attribution 4.0 International License.

Citation

Blath, Jochen; González Casanova, Adrián; Kurt, Noemi; Wilke-Berenguer, Maite. The seed bank coalescent with simultaneous switching. Electron. J. Probab. 25 (2020), paper no. 27, 21 pp. doi:10.1214/19-EJP401. https://projecteuclid.org/euclid.ejp/1582254383


Export citation

References

  • [1] Mátyás Barczy, Zenghu Li, and Gyula Pap, Yamada-Watanabe results for stochastic differential equations with jumps, Int. J. Stoch. Anal. (2015), Art. ID 460472, 23.
  • [2] N. H. Barton, A. M. Etheridge, and A. Véber, A new model for evolution in a spatial continuum, Electron. J. Probab. 15 (2010), no. 7, 162–216.
  • [3] J. Blath, E. Buzzoni, A. González Casanova, and M. Wilke-Berenguer, Structural properties of the seed bank and the two-island diffusion, J Math Biology 79 (2019), no. 1, 369–392.
  • [4] J. Blath, E. Buzzoni, J. Koskela, and M. Wilke-Berenguer, Statistical tools for seed bank detection, Theoretical Population Biology 132 (2020), 1–15.
  • [5] J. Blath, A. González Casanova, B. Eldon, N. Kurt, and M. Wilke-Berenguer, Genetic Variability under the Seedbank Coalescent, Genetics 200 (2015), no. 3, 921–934.
  • [6] J. Blath, A. González Casanova, N. Kurt, and D. Spanò, The ancestral process of long-range seed bank models, J. Appl. Probab. 50 (2013), no. 3, 741–759.
  • [7] J. Blath, A. González Casanova, N. Kurt, and M. Wilke-Berenguer, A new coalescent for seed-bank models, Ann. Appl. Probab. 26 (2016), no. 2, 857–891.
  • [8] F. den Hollander and G. Pederzani, Multi-colony Wright-Fisher with seed-bank, Indagationes Mathematicae 28 (2017), no. 3, 637–669.
  • [9] Peter Donnelly and Thomas G. Kurtz, Particle representations for measure-valued population models, Ann. Probab. 27 (1999), no. 1, 166–205.
  • [10] A. Etheridge, Some mathematical models from population genetics, Lecture Notes in Mathematics, vol. 2012, Springer, Heidelberg, 2011, Lectures from the 39th Probability Summer School held in Saint-Flour, 2009, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School].
  • [11] S. N. Ethier and T. G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986, Characterization and convergence.
  • [12] R. Griffiths, The Lambda-Fleming Viot process and a connection with Wright-Fisher diffusion, Adv. Appl. Prob. 46 (2014), 1009–1035.
  • [13] H. M. Herbots, Stochastic models in population genetics: genealogical and genetic differentiation in structured populations, Ph.D. thesis, University of London, 1994.
  • [14] S. Jansen and N. Kurt, On the notion(s) of duality for Markov processes, Probab. Surv. 11 (2014), 59–120.
  • [15] Ingemar Kaj, Stephen M. Krone, and Martin Lascoux, Coalescent theory for seed bank models, J. Appl. Probab. 38 (2001), no. 2, 285–300.
  • [16] Olav Kallenberg, Foundations of modern probability, second ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002.
  • [17] A. R. R. Kermany, X. Zhou, and D. A. Hickey, Joint stationary moments of a two-island diffusion model of population subdivision, Theoretical Population Biology 74 (2008), no. 3, 226–232.
  • [18] Thomas G. Kurtz, The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities, Electron. J. Probab. 12 (2007), 951–965.
  • [19] Thomas G. Kurtz, Weak and strong solutions of general stochastic models, Electron. Commun. Probab. 19 (2014), no. 58, 16.
  • [20] A. Lambert and C. Ma, The coalescent in peripatric metapopulations, J. Appl. Probab. 52 (2015), no. 2, 538–557.
  • [21] J. T. Lennon and S. E. Jones, Microbial seed banks: the ecological and evolutionary implications of dormancy, Nat. Rev. Microbiol. 9 (2011), no. 2, 119–130.
  • [22] J. Müller, B. Koopmann, A. Tellier A., and D. Živkovič, Fisher-wright model with deterministic seed bank and selection., Theor. Pop. Biol. (2017), 29–39.
  • [23] M. Notohara, The coalescent and the genealogical process in geographically structured population, Journal of Mathematical Biology 29 (1990), no. 1, 59–75.
  • [24] J. Pitman, Coalescents with multiple collisions, Ann. Probab. 27 (1999), no. 4, 1870–1902.
  • [25] S. Sagitov, The general coalescent with asynchronous mergers of ancestral lines, J. Appl. Probab. 36 (1999), no. 4, 1116–1125.
  • [26] Jason Schweinsberg, Coalescents with simultaneous multiple collisions, Electron. J. Probab. 5 (2000), 1–50.
  • [27] Jason Schweinsberg, A necessary and sufficient condition for the $\Lambda $-coalescent to come down from infinity, Electron. Comm. Probab. 5 (2000), 1–11.
  • [28] William R. Shoemaker and Jay T. Lennon, Evolution with a seed bank: The population genetic consequences of microbial dormancy, Evolutionary Applications 11 (2017), no. 1, 60–75.
  • [29] N. Takahata, The coalescent in two partially isolated diffusion populations, Genet. Res. 53 (1988), 213–222.
  • [30] A. Tellier, S. J. Y. Laurent, H. Lainer, P. Pavlidis, and W. Stephan, Inference of seed bank parameters in two wild tomato species using ecological and genetic data, PNAS 108 (2011), no. 41, 17052–17057.
  • [31] R. Vitalis, S. Glémin, and I. Olivieri, When genes go to sleep: The population genetic consequences of seed dormancy and monocarpic perenniality, The American Naturalist 163 (2004), no. 2, 259–311.
  • [32] S. Wright, The genetical structure of populations, Annals of Eugenics 15 (1951), no. 1, 323–354.
  • [33] D. Zivkovič and A. Tellier, Germ banks affect the inference of past demographic events., Mol. Ecol. 21 (2012), 5434–5446.