Electronic Journal of Probability

The stochastic Cauchy problem driven by a cylindrical Lévy process

Umesh Kumar and Markus Riedle

Full-text: Open access


In this work, we derive sufficient and necessary conditions for the existence of a weak and mild solution of an abstract stochastic Cauchy problem driven by an arbitrary cylindrical Lévy process. Our approach requires to establish a stochastic Fubini result for stochastic integrals with respect to cylindrical Lévy processes. This approach enables us to conclude that the solution process has almost surely scalarly square integrable paths. Further properties of the solution such as the Markov property and stochastic continuity are derived.

Article information

Electron. J. Probab., Volume 25 (2020), paper no. 10, 26 pp.

Received: 14 February 2019
Accepted: 22 December 2019
First available in Project Euclid: 29 January 2020

Permanent link to this document

Digital Object Identifier

Primary: 60H15: Stochastic partial differential equations [See also 35R60] 60G51: Processes with independent increments; Lévy processes 60G20: Generalized stochastic processes 60H05: Stochastic integrals

cylindrical Lévy process Cauchy problem stochastic Fubini theorem cylindrical infinitely divisible

Creative Commons Attribution 4.0 International License.


Kumar, Umesh; Riedle, Markus. The stochastic Cauchy problem driven by a cylindrical Lévy process. Electron. J. Probab. 25 (2020), paper no. 10, 26 pp. doi:10.1214/19-EJP407. https://projecteuclid.org/euclid.ejp/1580267010

Export citation


  • [1] D. Applebaum. Martingale-valued measures, Ornstein-Uhlenbeck processes with jumps and operator self-decomposability in Hilbert space. In In memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX, pages 171–196. Berlin: Springer, 2006.
  • [2] D. Applebaum. Lévy processes and stochastic calculus, volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, second edition, 2009.
  • [3] D. Applebaum and M. Riedle. Cylindrical Lévy processes in Banach spaces. Proc. Lond. Math. Soc., 101(3):697–726, 2010.
  • [4] N. Bourbaki. Functions of a real variable. Berlin: Springer-Verlag, 2004.
  • [5] Z. Brzeźniak, B. Goldys, P. Imkeller, S. Peszat, E. Priola, and J. Zabczyk. Time irregularity of generalized Ornstein-Uhlenbeck processes. C. R. Math. Acad. Sci. Paris, 348(5-6):273–276, 2010.
  • [6] Z. Brzeźniak and J. M. A. M. van Neerven. Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem. Studia Math., 143(1):43–74, 2000.
  • [7] Z. Brzeźniak and J. Zabczyk. Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise. Potential Anal., 32(2):153–188, 2010.
  • [8] A. Chojnowska-Michalik. On processes of Ornstein-Uhlenbeck type in Hilbert space. Stochastics, 21(3):251–286, 1987.
  • [9] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions. Cambridge: Cambridge University Press, 2014.
  • [10] J. Dieudonné. Foundations of modern analysis. New York: Academic Press, 1969.
  • [11] N. Dunford and J. Schwartz. Linear operators. Part I. New York: John Wiley & Sons, Inc., 1988.
  • [12] D. Filipović, S. Tappe, and J. Teichmann. Jump-diffusions in Hilbert spaces: existence, stability and numerics. Stochastics, 82(5):475–520, 2010.
  • [13] A. Jakubowski. Tightness criterion for random measures with application to the principle of conditioning in Hilbert spaces. Probab. Math. Stat., 9(1):95–114, 1998.
  • [14] A. Jakubowski and M. Riedle. Stochastic integration with respect to cylindrical Lévy processes. Annals of Probability, 45:4273–4306, 2017.
  • [15] W. Linde. Probability in Banach spaces–stable and infinitely divisible distributions. Chichester: John Wiley & Sons, Ltd., 1986.
  • [16] Y. Liu and J. Zhai. A note on time regularity of generalized Ornstein-Uhlenbeck processes with cylindrical stable noise. C. R. Math. Acad. Sci. Paris, 350(1–2):97–100, 2012.
  • [17] Y. Liu and J. Zhai. Time regularity of generalized Ornstein-Uhlenbeck processes with Lévy noises in Hilbert spaces. J. Theoret. Probab., 29(3):843–866, 2016.
  • [18] K. R. Parthasarathy. Probability measures on metric spaces. Providence, RI: AMS Chelsea Publishing, 2005.
  • [19] S. Peszat and J. Zabczyk. Stochastic partial differential equations with Lévy noise. An evolution equation approach. Cambridge: Cambridge University Press, 2007.
  • [20] S. Peszat and J. Zabczyk. Time regularity of solutions to linear equations with Lévy noise in infinite dimensions. Stochastic Process. Appl., 123(3):719–751, 2013.
  • [21] E. Priola and J. Zabczyk. Structural properties of semilinear SPDEs driven by cylindrical stable processes. Probab. Theory Related Fields, 149(1–2):97–137, 2011.
  • [22] M. Riedle. Stable cylindrical Lévy processes and the stochastic Cauchy problem. Preprint. https://kclpure.kcl.ac.uk/portal/files/71677012/stable3.pdf.
  • [23] M. Riedle. Infinitely divisible cylindrical measures on Banach spaces. Studia Math., 207(3):235–256, 2011.
  • [24] M. Riedle. Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes. Potential Anal., 42(4):809–838, 2015.
  • [25] J. M. A. M. van Neerven. Stochastic Evolutions Equations. ISEM Lecture Notes, 2007.
  • [26] J. M. A. M. van Neerven and M. Veraar. On the stochastic Fubini theorem in infinite dimensions. In Stochastic partial differential equations and applications—VII, pages 323–336. Boca Raton, FL: Chapman & Hall/CRC, 2006.
  • [27] J. M. A. M. van Neerven and L. Weis. Stochastic integration of functions with values in a Banach space. Studia Math., 166(2):131–170, 2005.