Electronic Journal of Probability

Finitary coding for the sub-critical Ising model with finite expected coding volume

Yinon Spinka

Full-text: Open access


It has been shown by van den Berg and Steif [5] that the sub-critical Ising model on $\mathbb{Z} ^{d}$ is a finitary factor of a finite-valued i.i.d. process. We strengthen this by showing that the factor map can be made to have finite expected coding volume (in fact, stretched-exponential tails), answering a question of van den Berg and Steif. The result holds at any temperature above the critical temperature. An analogous result holds for Markov random fields satisfying a high-noise assumption and for proper colorings with a large number of colors.

Article information

Electron. J. Probab., Volume 25 (2020), paper no. 8, 27 pp.

Received: 6 November 2018
Accepted: 17 January 2020
First available in Project Euclid: 29 January 2020

Permanent link to this document

Digital Object Identifier

Primary: 28D99: None of the above, but in this section 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
Secondary: 82B26: Phase transitions (general) 37A60: Dynamical systems in statistical mechanics [See also 82Cxx]

Ising model finitary coding finite expected coding volume

Creative Commons Attribution 4.0 International License.


Spinka, Yinon. Finitary coding for the sub-critical Ising model with finite expected coding volume. Electron. J. Probab. 25 (2020), paper no. 8, 27 pp. doi:10.1214/20-EJP420. https://projecteuclid.org/euclid.ejp/1580267008

Export citation


  • [1] Scot Adams, Følner independence and the amenable Ising model, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 633–657.
  • [2] Michael Aizenman, Hugo Duminil-Copin, and Vladas Sidoravicius, Random currents and continuity of Ising model’s spontaneous magnetization, Comm. Math. Phys. 334 (2015), no. 2, 719–742.
  • [3] Michael Aizenman and Roberto Fernández, On the critical behavior of the magnetization in high-dimensional Ising models, J. Statist. Phys. 44 (1986), no. 3–4, 393–454.
  • [4] Jacob van den Berg and Christian Maes, Disagreement percolation in the study of Markov fields, Ann. Probab. 22 (1994), no. 2, 749–763.
  • [5] Jacob van den Berg and Jeffrey E. Steif, On the existence and nonexistence of finitary codings for a class of random fields, Ann. Probab. 27 (1999), no. 3, 1501–1522.
  • [6] Roland L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Theor. Probab. Appl. 13 (1968), 197–224.
  • [7] Robert G. Edwards and Alan D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D (3) 38 (1988), no. 6, 2009–2012.
  • [8] Hans-Otto Georgii, Olle Häggström, and Christian Maes, The random geometry of equilibrium phases, Phase transitions and critical phenomena, Vol. 18, Phase Transit. Crit. Phenom., vol. 18, Academic Press, San Diego, CA, 2001, pp. 1–142.
  • [9] Geoffrey Grimmett, The random-cluster model, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 333, Springer-Verlag, Berlin, 2006.
  • [10] Olle Häggström and Jeffrey E. Steif, Propp-Wilson algorithms and finitary codings for high noise Markov random fields, Combin. Probab. Comput. 9 (2000), no. 5, 425–439.
  • [11] Matan Harel and Yinon Spinka, Finitary codings for the random-cluster model and other infinite-range monotone models, arXiv:1808.02333 (2018).
  • [12] Nate Harvey, Alexander E. Holroyd, Yuval Peres, and Dan Romik, Universal finitary codes with exponential tails, Proc. Lond. Math. Soc. (3) 94 (2007), no. 2, 475–496.
  • [13] Mark Huber, Exact sampling and approximate counting techniques, STOC ’98 (Dallas, TX), ACM, New York, 1999, pp. 31–40.
  • [14] Mark Huber, Perfect sampling using bounding chains, Ann. Appl. Probab. 14 (2004), no. 2, 734–753.
  • [15] Michael Keane and Meir Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math. (2) 109 (1979), no. 2, 397–406.
  • [16] Michael Keane and Meir Smorodinsky, Finitary isomorphisms of irreducible Markov shifts, Israel J. Math. 34 (1979), no. 4, 281–286 (1980).
  • [17] Thomas M. Liggett, Interacting particle systems, Classics in Mathematics, Springer-Verlag, Berlin, 2005, Reprint of the 1985 original.
  • [18] Fabio Martinelli and Enzo Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case, Comm. Math. Phys. 161 (1994), no. 3, 447–486.
  • [19] Donald S. Ornstein, Ergodic theory, randomness, and dynamical systems, Yale University Press, New Haven, Conn.-London, 1974, James K. Whittemore Lectures in Mathematics given at Yale University, Yale Mathematical Monographs, No. 5.
  • [20] Donald S. Ornstein and Benjamin Weiss, $\mathbf{Z} ^{d}$-actions and the Ising model, Unpublished, 1977.
  • [21] James G. Propp and David B. Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics, Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995), vol. 9, 1996, pp. 223–252.
  • [22] Jesús Salas and Alan D. Sokal, Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem, J. Statist. Phys. 86 (1997), no. 3-4, 551–579.
  • [23] Robert H. Swendsen and Jian-Sheng Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Physical Review Letters 58 (1987), no. 2, 86.
  • [24] David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991.
  • [25] Chen N. Yang, The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev. (2) 85 (1952), 808–816.