Electronic Journal of Probability

External branch lengths of $\Lambda $-coalescents without a dust component

Christina S. Diehl and Götz Kersting

Full-text: Open access

Abstract

$\Lambda $-coalescents model genealogies of samples of individuals from a large population by means of a family tree. The tree’s leaves represent the individuals, and the lengths of the adjacent edges indicate the individuals’ time durations up to some common ancestor. These edges are called external branches. We consider typical external branches under the broad assumption that the coalescent has no dust component and maximal external branches under further regularity assumptions. As it transpires, the crucial characteristic is the coalescent’s rate of decrease $\mu (b)$, $b\geq 2$. The magnitude of a typical external branch is asymptotically given by $n/\mu (n)$, where $n$ denotes the sample size. This result, in addition to the asymptotic independence of several typical external lengths, holds in full generality, while convergence in distribution of the scaled external lengths requires that $\mu (n)$ is regularly varying at infinity. For the maximal lengths, we distinguish two cases. Firstly, we analyze a class of $\Lambda $-coalescents coming down from infinity and with regularly varying $\mu $. Here, the scaled external lengths behave as the maximal values of $n$ i.i.d. random variables, and their limit is captured by a Poisson point process on the positive real line. Secondly, we turn to the Bolthausen-Sznitman coalescent, where the picture changes. Now, the limiting behavior of the normalized external lengths is given by a Cox point process, which can be expressed by a randomly shifted Poisson point process.

Article information

Source
Electron. J. Probab., Volume 24 (2019), paper no. 134, 36 pp.

Dates
Received: 20 November 2018
Accepted: 15 August 2019
First available in Project Euclid: 13 November 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1573635869

Digital Object Identifier
doi:10.1214/19-EJP354

Subjects
Primary: 60J75: Jump processes
Secondary: 60F05: Central limit and other weak theorems 60J27: Continuous-time Markov processes on discrete state spaces 92D25: Population dynamics (general)

Keywords
$\Lambda $-coalescent dustless coalescent Bolthausen-Sznitman coalescent Beta-coalescent Kingman’s coalescent external branch lengths Poisson point process Cox point process weak limit law

Rights
Creative Commons Attribution 4.0 International License.

Citation

Diehl, Christina S.; Kersting, Götz. External branch lengths of $\Lambda $-coalescents without a dust component. Electron. J. Probab. 24 (2019), paper no. 134, 36 pp. doi:10.1214/19-EJP354. https://projecteuclid.org/euclid.ejp/1573635869


Export citation

References

  • [1] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge University Press, Cambridge.
  • [2] Blum, M. G. B. and François, O. (2005). Minimal clade size and external branch length under the neutral coalescent. Adv. in Appl. Probab. 37, 647–662.
  • [3] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method. Comm. Math. Phys. 197, 247–276.
  • [4] Boros, G. and Moll, V. (2004). Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge University Press, Cambridge.
  • [5] Brunet, E., Derrida, B., Mueller, A. H. and Munier, S. (2007). Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization. Phys. Rev. E 76, 041104.
  • [6] Caliebe, A., Neininger, R., Krawczak, M. and Rösler, U. (2007). On the length distribution of external branches in coalescence trees: genetic diversity within species. Theor. Popul. Biol. 72, 245–252.
  • [7] Dahmer, I., Kersting, G. and Wakolbinger, A. (2014). The total external branch length of Beta-coalescents. Combin. Probab. Comput. 23, 1010–1027.
  • [8] Desai, M. M., Walczak, A. M. and Fisher, D. S. (2013). Genetic diversity and the structure of genealogies in rapidly adapting populations. Genetics 193, 565–585.
  • [9] Dhersin, J.-S., Freund, F., Siri-Jégousse, A. and Yuan, L. (2013). On the length of an external branch in the Beta-coalescent. Stochastic Process. Appl. 123, 1691–1715.
  • [10] Dhersin, J.-S. and Möhle, M. (2013). On the external branches of coalescents with multiple collisions. Electron. J. Probab. 18, 1–11.
  • [11] Dhersin, J.-S. and Yuan, L. (2015). On the total length of external branches for Beta-coalescents. Adv. in Appl. Probab. 47, 693–714.
  • [12] Diehl, C. S. and Kersting, G. (2019). Tree lengths for general $\Lambda $-coalescents and the asymptotic site frequency spectrum around the Bolthausen-Sznitman coalescent. Ann. Appl. Probab. 29, 2700–2743.
  • [13] Eldon, B., Birkner, M., Blath, J. and Freund, F. (2015). Can the site-frequency spectrum distinguish exponential population growth from multiple-merger coalescents? Genetics 199, 841–856.
  • [14] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2. John Wiley & Sons, New York.
  • [15] Freund, F. and Möhle, M. (2009). On the time back to the most recent common ancestor and the external branch length of the Bolthausen-Sznitman coalescent. Markov Process. Related Fields 15, 7387–416.
  • [16] Goldschmidt, C. and Martin, J. (2005). Random recursive trees and the Bolthausen-Sznitman coalescent. Electron. J. Probab. 10, 718–745.
  • [17] Janson, S. and Kersting, G. (2011). On the total external length of the Kingman coalescent. Electron. J. Probab. 16, 2203–2218.
  • [18] Kersting, G., Pardo, J., and Siri-Jégousse, A. (2014). Total internal and external lengths of the Bolthausen-Sznitman coalescent. J. Appl. Probab., 51, 73–86.
  • [19] Kersting, G., Schweinsberg, J. and Wakolbinger, A. (2014). The evolving beta coalescent. Electron. J. Probab. 19, 1–27.
  • [20] Kersting, G., Schweinsberg, J. and Wakolbinger, A. (2018). The size of the last merger and time reversal in $\Lambda $-coalescents. Ann. Inst. Henri Poincaré Probab. Stat. 54, 1527–1555.
  • [21] Kimura, M. (1969). The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61, 893–903.
  • [22] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13, 235–248.
  • [23] Limic, V. and Sturm, A. (2006). The spatial $\Lambda $-coalescent. Electron. J. Probab. 11, 363–393.
  • [24] Möhle, M. (2010). Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent. Stochastic Process. Appl. 120, 2159–2173.
  • [25] Möhle, M. (2015). The Mittag-Leffler process and a scaling limit for the block counting process of the Bolthausen-Sznitman coalescent. ALEA Lat. Am. J. Probab. Math. Stat. 12, 35–53.
  • [26] Neher, R. A. and Hallatschek, O. (2013). Genealogies of rapidly adapting populations. Proc. Natl. Acad. Sci. USA 10, 437–442.
  • [27] Niwa, H.-S., Nashida, K. and Yanagimoto, T. (2016). Reproductive skew in Japanese sardine inferred from DNA sequences. ICES J. Mar. Sci. 73, 2181–2189.
  • [28] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27, 1870–1902.
  • [29] Seneta, E. (1973). A Tauberian theorem of E. Landau and W. Feller. Ann. Probab. 1, 1057–1058.
  • [30] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36, 1116–1125.
  • [31] Schweinsberg, J. (2000). A necessary and sufficient condition for the $\Lambda $-coalescent to come down from infinity. Electron. Commun. Probab. 5, 1–11.
  • [32] Schweinsberg, J. (2017). Rigorous results for a population model with selection II: genealogy of the population. Electron. J. Probab. 38, 1–54.
  • [33] Siri-Jégousse, A. and Yuan, L. (2016). Asymptotics of the minimal clade size and related functionals of certain Beta-coalescents. Acta Appl. Math. 142, 127–148.
  • [34] Steinrücken, M., Birkner, M. and Blath, J. (2013). Analysis of DNA sequence variation within marine species using Beta-coalescents. Theor. Popul. Biol. 87, 15–24.
  • [35] Villandré, L., Labbe, A., Brenner, B., Roger, M. and Stephens, D. A. (2018). DM-PhyClus: a Bayesian phylogenetic algorithm for infectious disease transmission cluster inference. BMC Bioinformatics 19, 324.
  • [36] Wakeley, J., Nielsen, R., Liu-Cordero, S. N. and Ardlie, K. (2001). The discovery of single-nucleotide polymorphisms—and inferences about human demographic history. Am. J. Hum. Genet. 69, 1332–1347.
  • [37] Wallstrom, T., Bhattacharya, T., Wilkins, J. and Fischer, W. (2016). Generalized coalescents may be necessary for modeling intrahost HIV evolution, presented at 23rd International HIV Dynamics and Evolution, 2016-04-27 (Woods Hole, Massachusetts, United States). https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-22791.
  • [38] Yuan, L. (2014). On the measure division construction of $\Lambda $-coalescents. Markov Process. Related Fields. 20, 229–264.