Electronic Journal of Probability

The Widom-Rowlinson model on the Delaunay graph

Stefan Adams and Michael Eyers

Full-text: Open access


We establish phase transitions for continuum Delaunay multi-type particle systems (continuum Potts or Widom-Rowlinson models) with a repulsive interaction between particles of different types. Our interaction potential depends solely on the length of the Delaunay edges. We show that a phase transition occurs for sufficiently large activities and for sufficiently large potential parameter proving an old conjecture of Lebowitz and Lieb extended to the Delaunay structure. Our approach involves a Delaunay random-cluster representation analogous to the Fortuin-Kasteleyn representation of the Potts model. The phase transition manifests itself in the mixed site-bond percolation of the corresponding random-cluster model. Our proofs rely mainly on geometric properties of Delaunay tessellations in $\mathbb{R} ^{2} $ and on recent studies [DDG12] of Gibbs measures for geometry-dependent interactions. The main tool is a uniform bound on the number of connected components in the Delaunay graph which provides a novel approach to Delaunay Widom Rowlinson models based on purely geometric arguments. The interaction potential ensures that shorter Delaunay edges are more likely to be open and thus offsets the possibility of having an unbounded number of connected components.

Article information

Electron. J. Probab., Volume 24 (2019), paper no. 114, 41 pp.

Received: 24 May 2018
Accepted: 4 October 2019
First available in Project Euclid: 11 October 2019

Permanent link to this document

Digital Object Identifier

Primary: 60G55: Point processes 60G57: Random measures 82B21: Continuum models (systems of particles, etc.) 82B05: Classical equilibrium statistical mechanics (general) 82B26: Phase transitions (general) 82B43: Percolation [See also 60K35]

Delaunay tessellation Widom-Rowlinson Gibbs measures random cluster measures mixed site-bond percolation phase transition coarse graining multi-body interaction

Creative Commons Attribution 4.0 International License.


Adams, Stefan; Eyers, Michael. The Widom-Rowlinson model on the Delaunay graph. Electron. J. Probab. 24 (2019), paper no. 114, 41 pp. doi:10.1214/19-EJP370. https://projecteuclid.org/euclid.ejp/1570759239

Export citation


  • [AE16] S. Adams and M. Eyers, Phase Transitions in Delaunay Potts Models, Journal of Statistical Physics 162, Issue 1, 162–185, DOI 10.1007/s10955-015-1393-8 (2016).
  • [BBD99] E. Bertin, J.M. Billiot and R. Drouilhet, Existence of Delaunay pairwise Gibbs point process with superstable component, Journal of Statistical Physics 95, 719–744 (1999).
  • [BBD02] E. Bertin, J.M. Billiot and R. Drouilhet, Continuum Percolation in The Gabriel Graph, Advances in Applied Probability, Vol. 34, No. 4, 689–701 (2002).
  • [BBD04] E. Bertin, J.M. Billiot and R. Drouilhet, Phase Transition in the Nearest-Neighbor Continuum Potts Model, Journal of Statistical Physics 114, Nos. 1/2, 79–100 (2004).
  • [BKL84] J. Bricmont, K. Kuroda and J.L. Lebowitz, The structure of Gibbs states and coexistence for non-symmetric continuum Widom-Rowlinson models, Prob. Theory Relat. Field 67, 121–138 (1984).
  • [CCK95] J.T. Chayes, L. Chayes and R. Kotecký, The Analysis of the Widom-Rowlinson Model by Stochastic Geometric Methods, Commun. Math. Phys. 172, 551–569 (1995).
  • [Der08] D. Dereudre, Gibbs Delaunay tessellations with geometric hard core conditions, Journal of Statistical Physics 131, 127–151 (2008).
  • [DDG12] D. Dereudre, R. Drouilhet and H.O. Georgii, Existence of Gibbsian point processes with geometry-dependent interactions, Probab. Theory Relat. Fields 153, 643–670 (2012).
  • [DG09] D. Dereudre and H.O. Georgii, Variational characterisation of Gibbs measures with Delaunay triangle interaction, Electronic Journal of Probability 14, 2438–2462 (2009).
  • [DL11] D. Dereudre and F. Lavancier, Practical Simulation and estimation for Gibbs Delaunay-Voronoi tessellations with geometric hard-core interaction, Computational Statistics and Data Analysis 55, 498–519 (2011).
  • [Eye14] M. Eyers, On Delaunay Random-Cluster Models, PhD thesis University of Warwick (2014), available at http://wrap.warwick.ac.uk/67144/.
  • [Geo94] H.-O. Georgii, Large deviations and the equivalence of ensembles for Gibbssian particle systems with superstable interaction, Prob. Theory Relat. Fields 99, 171–195 (1994).
  • [GH96] H.O. Georgii and O. Häggström, Phase transition in continuum Potts models, Commun. Math. Phys. 181, 507–528 (1996).
  • [GHM00] H.O. Georgii, O. Häggström and C. Maes, The random geometry of equilibrium phases, In: C. Domb and J.L. Lebowitz (eds.) Phase Transitions and Critical Phenomena, Vol. 18, Academic Press, London, pp. 1–142 (2000).
  • [GK97] H.O. Georgii and T. Küneth, Stochastic comparison of point random fields, Journal of Applied Probability 34, 868–881 (1997).
  • [Gri94] G. Grimmett, Potts-models and random-cluster processes with many-body interactions, Journal in Statistical Physics 75, 67–121 (1994).
  • [Hag00] O. Häggström, Markov random fields and percolation on general graphs, Adv. Appl. Prob. 32, 39–66 (2000).
  • [Ham80] J.M. Hammersley, A generalization of McDiarmid’s theorem for mixed Bernoulli percolation, Mathematical proceedings of the Cambridge mathematical society, 88, 167–170 (1980).
  • [Kes82] H. Kesten, Percolation theory for mathematicians, Birkhäuser, Boston (1982).
  • [LMP99] J.L. Lebowitz, A. Mazel and E. Presutti, Liquid-vapor phase transitions for systems with finite range interactions, Journal in Statistical Physics 94, 955–1025 (1999).
  • [LL72] J.L. Lebowitz and E.H. Lieb, Phase transition in a continuum classical system with finite interactions, Phys. Lett. 39A, 98–100 (1972).
  • [Lis94] D. Lischinski, Incremental Delaunay Triangulation, in Graphic gems IV, 47–59, Academic Press (1994).
  • [MSS15] A. Mazel, Y. Suhov and I. Stuhl, A classical WR model with q particle types, Journal in Statistical Physics 159, 1040–1086 (2015).
  • [MR09] F. Merkl and S.W.W. Rolles, Spontaneous breaking of continuous rotational symmetry in two dimensions, Electron. J. Probab. 14, 1705–1726 (2009).
  • [Mø94] J. Møller, Lectures in Random Voronoi Tessellations, Springer Lecture Notes in Statistics 87, Springer (1994).
  • [Rue70] D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys. 18, 127–159 (1970).
  • [Rue71] D. Ruelle, Existence of a phase transition in a continuous classical system, Phys. Rev. Lett. 27, 1040–1041 (1971).
  • [WR70] B. Widom and J. Rowlinson, New model for the study of liquid-vapour transitions, J. Chem. Phys. 52, 1670–1684 (1970).