Open Access
2019 The interchange process with reversals on the complete graph
Jakob E. Björnberg, Michał Kotowski, Benjamin Lees, Piotr Miłoś
Electron. J. Probab. 24: 1-43 (2019). DOI: 10.1214/19-EJP366

Abstract

We consider an extension of the interchange process on the complete graph, in which a fraction of the transpositions are replaced by ‘reversals’. The model is motivated by statistical physics, where it plays a role in stochastic representations of xxz-models. We prove convergence to PD($\tfrac{1} {2}$) of the rescaled cycle sizes, above the critical point for the appearance of macroscopic cycles. This extends a result of Schramm on convergence to PD(1) for the usual interchange process.

Citation

Download Citation

Jakob E. Björnberg. Michał Kotowski. Benjamin Lees. Piotr Miłoś. "The interchange process with reversals on the complete graph." Electron. J. Probab. 24 1 - 43, 2019. https://doi.org/10.1214/19-EJP366

Information

Received: 25 April 2019; Accepted: 18 September 2019; Published: 2019
First available in Project Euclid: 2 October 2019

zbMATH: 07142902
MathSciNet: MR4017126
Digital Object Identifier: 10.1214/19-EJP366

Subjects:
Primary: 60J27 , 60K35

Keywords: interchange process , Poisson-Dirichlet distribution , XXZ model

Vol.24 • 2019
Back to Top