Electronic Journal of Probability

Existence of density for the stochastic wave equation with space-time homogeneous Gaussian noise

Raluca M. Balan, Lluís Quer-Sardanyons, and Jian Song

Full-text: Open access

Abstract

In this article, we consider the stochastic wave equation on $\mathbb{R} _{+} \times \mathbb{R} $, driven by a linear multiplicative space-time homogeneous Gaussian noise whose temporal and spatial covariance structures are given by locally integrable functions $\gamma $ (in time) and $f$ (in space), which are the Fourier transforms of tempered measures $\nu $ on $\mathbb{R} $, respectively $\mu $ on $\mathbb{R} $. Our main result shows that the law of the solution $u(t,x)$ of this equation is absolutely continuous with respect to the Lebesgue measure.

Article information

Source
Electron. J. Probab., Volume 24 (2019), paper no. 106, 43 pp.

Dates
Received: 17 May 2018
Accepted: 18 September 2019
First available in Project Euclid: 1 October 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1569895475

Digital Object Identifier
doi:10.1214/19-EJP363

Subjects
Primary: Primary 60H15 60H07: Stochastic calculus of variations and the Malliavin calculus

Keywords
Gaussian noise stochastic partial differential equations Malliavin calculus

Rights
Creative Commons Attribution 4.0 International License.

Citation

Balan, Raluca M.; Quer-Sardanyons, Lluís; Song, Jian. Existence of density for the stochastic wave equation with space-time homogeneous Gaussian noise. Electron. J. Probab. 24 (2019), paper no. 106, 43 pp. doi:10.1214/19-EJP363. https://projecteuclid.org/euclid.ejp/1569895475


Export citation

References

  • [1] Balan, R. M. (2012). The stochastic wave equation with multiplicative fractional noise: a Malliavin calculus approach. Potential Anal. 36, 1–34.
  • [2] Balan, R. M. and Chen, L. (2018). Parabolic Anderson model with space-time homogeneous Gaussian noise and rough initial conditions. J. Theor. Probab. 31, 2216–2265.
  • [3] Balan, R. M. and Song, J. (2017). Hyperbolic Anderson Model with space-time homogeneous Gaussian noise. Latin Amer. J. Probab. Math. Stat. 14, 799–849.
  • [4] Balan, R. M. and Song, J. (2017). Second order Lyapunov exponents for parabolic and hyperbolic Anderson models. Preprint available on arXiv:1704.02411.
  • [5] Bally, V. and Pardoux, E. (1998). Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal. 9, 27–64.
  • [6] Basse-O’Connor, A., Graversen, S.-E. and Pedersen, J. (2012). Multiparameter processes with stationary increments. Spectral representation and intregration. Electr. J. Probab. 17, paper no. 74, 21 pages.
  • [7] Carmona, R. and Nualart, D. (1988). Random non-linear wave equations: smoothness of the solutions. Probab. Th. Rel. Fields 79, 469–508.
  • [8] Cohn, D. L. (1972). Measurable choice of limit points and the existence of separable and measurable processes. Z. Wahr. verw. Geb. 22, 161–165.
  • [9] Dalang R.C. (1999) Extending martingale measure stochastic integral with applications to spatially homogeneous spde’s. Electr. J. Probab. 4.
  • [10] Dalang, R. C. and Frangos, N. (1998). The stochastic wave equation in two spatial dimensions. Ann. Probab. 26, 187–212.
  • [11] Dalang, R. C. and Sanz-Solé, M. (2005). Regularity of the sample paths of a class of second-order spde’s. J. Funct. Anal. 227, 304–337.
  • [12] Delgado-Vences, F., Nualart, D. and Zheng, G. (2018). A central limit theorem for the stochastic wave equation with fractional noise. Preprint available on arXiv:1812.05019.
  • [13] Dellacherie, C. and Meyer, P.A. (1975). Probabilités et Potentiel. Hermann, Paris.
  • [14] Hu, Y., Huang, J., Nualart, D. and Tindel, S. (2015). Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electr. J. Probab. 20, no. 55, 1–50.
  • [15] Hu, Y. and Lê, K. (2018). Asumptotics of the density of parabolic Anderson random fields. Preprint available on arXiv:1801.03386.
  • [16] Hu, Y., Nualart, D. and Song, J. (2011). Feynman-Kac formula for heat equation driven by fractional white noise. Ann. Probab. 39, 291–326.
  • [17] Huang, J., Lê, K. and Nualart, D. (2017). Large time asymptotics for the Parabolic Anderson model driven by spatially correlated noise. Ann. Inst. Henri Poincaré 53, 1305–1340.
  • [18] Huang, J., Nualart, D. and Viitasaari, L. (2018). A central limit theorem for the stochastic heat equation. Preprint available on arXiv:1810.09492.
  • [19] Itô, K. (1954) Stationary random distributions. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 28, 209–223.
  • [20] Jolis, M. (2010). The Wiener integral with respect to second-order processes with stationary increments. J. Math. Anal. Appl. 366, 607–620.
  • [21] Khoshnevisan, D. and Xiao, Y. (2009). Harmonic analysis of additive Lévy processes. Probab. Th. Rel. Fields 145, 459–515.
  • [22] Márquez-Carreras, D., Mellouk, M., Sarrà, M. (2001). On stochastic partial differential equations with spatially correlated noise: smoothness of the law. Stoch. Proc. Appl. 93, 269–284.
  • [23] Millet, A. and Sanz-Solé, M. (1999). A stochastic wave equation in two space dimension: smoothness of the law. Ann. Probab. 27, 803–844.
  • [24] Mueller, C. and Nualart, D. (2008). Regularity of the density for the stochastic heat equation. Electr. J. Probab. 13, Paper no. 74, 2248–2258.
  • [25] Nualart, D. (1998). Analysis on Wiener space and anticipative stochastic calculus. Lecture Notes Math. 1690. Ecole d’ete de probabilités de Saint Flour XXV-1995, P. Bernard Ed. 123–227.
  • [26] Nualart, D. (2006). Malliavin Calculus and Related Topics. Second Edition. Springer.
  • [27] Nualart, D. and Quer-Sardanyons, L. (2007). Existence and smoothness of the density for spatially homogeneous SPDEs. Potential Anal. 27, 281–299.
  • [28] Pardoux, E. and Zhang, T. (1993). Absolute continuity for the law of the solution of a parabolic SPDE. J. of Funct. Anal. 112, 447–458.
  • [29] Peszat, S. (2002). The Cauchy problem for a nonlinear stochastic wave equation in any dimension. J. Evol. Equ. 2, 383–394.
  • [30] Peszat, S. and Zabczyk, J. (2000). Nonlinear stochastic wave and heat equations. Probab. Th. Rel. Fields 116, 421–443.
  • [31] Peszat, S. and Zabczyk, J. (2007). Stochastic Partial Differential Equations with Lévy Noise. Cambridge University Press.
  • [32] Quer-Sardanyons, L., Sanz-Solé, M. (2004). Absolute continuity of the law of the solution to the 3-dimensional stochastic wave equation. J. Funct. Anal. 206, no. 1, 1–32.
  • [33] Quer-Sardanyons, L., Sanz-Solé, M. (2004) A stochastic wave equation in dimension 3: Smoothness of the law. Bernoulli 10, no. 1, 165–186.
  • [34] Sanz-Solé, M. and Süß, A. (2013). The stochastic wave equation in high dimensions: Malliavin differentiability and absolute continuity. Electr. J. Probab. 18, no. 64, 1–28
  • [35] Sanz-Solé, M. and Süß, A. (2015). Absolute continuity for SPDEs with irregular fundamental solution. Electr. Comm. Probab. 20, no. 14, 1–11.
  • [36] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. Ecole d’Eté de Probabilités de Saint-Flour XIV. Lecture Notes in Math. 1180, 265–439, Springer-Verlag.