Electronic Journal of Probability

Coalescences in continuous-state branching processes

Clément Foucart, Chunhua Ma, and Bastien Mallein

Full-text: Open access

Abstract

Consider a continuous-state branching population constructed as a flow of nested subordinators. Inverting the subordinators and reversing time give rise to a flow of coalescing Markov processes with negative jumps, which correspond to the ancestral lineages of individuals in the current generation. The process of the ancestral lineage of a fixed individual is the Siegmund dual process of the continuous-state branching process. We study its semi-group, its long-term behaviour and its generator. In order to follow the coalescences in the ancestral lineages and to describe the backward genealogy of the population, we define non-exchangeable Markovian coalescent processes obtained by sampling individuals according to an independent Poisson point process over the flow. These coalescent processes are called consecutive coalescents, as only consecutive blocks can merge. They are characterized in law by finite measures on $\mathbb{N} $ which can be thought as the offspring distributions of some inhomogeneous immortal Galton-Watson processes forward in time.

Article information

Source
Electron. J. Probab., Volume 24 (2019), paper no. 103, 52 pp.

Dates
Received: 17 January 2019
Accepted: 8 September 2019
First available in Project Euclid: 1 October 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1569895472

Digital Object Identifier
doi:10.1214/19-EJP358

Subjects
Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 60J25: Continuous-time Markov processes on general state spaces 60J27: Continuous-time Markov processes on discrete state spaces 60J28: Applications of continuous-time Markov processes on discrete state spaces

Keywords
branching processes coalescent processes continuous-state branching processes flow of subordinators genealogy duality

Rights
Creative Commons Attribution 4.0 International License.

Citation

Foucart, Clément; Ma, Chunhua; Mallein, Bastien. Coalescences in continuous-state branching processes. Electron. J. Probab. 24 (2019), paper no. 103, 52 pp. doi:10.1214/19-EJP358. https://projecteuclid.org/euclid.ejp/1569895472


Export citation

References

  • [Ald93] David Aldous, The continuum random tree. III, Ann. Probab. 21 (1993), no. 1, 248–289.
  • [AN04] Krishna Athreya and Peter Ney, Branching processes, Dover Publications, Inc., Mineola, NY, 2004, Reprint of the 1972 original [Springer, New York; MR0373040].
  • [AP05] David Aldous and Lea Popovic, A critical branching process model for biodiversity, Adv. in Appl. Probab. 37 (2005), no. 4, 1094–1115.
  • [Ath12] Krishna Athreya, Coalescence in critical and subcritical Galton-Watson branching processes, J. Appl. Probab. 49 (2012), no. 3, 627–638.
  • [BB15] Erich Baur and Jean Bertoin, The fragmentation process of an infinite recursive tree and Ornstein-Uhlenbeck type processes, Electron. J. Probab. 20 (2015), no. 98, 20.
  • [BBC$^{+}$05] Matthias Birkner, Jochen Blath, Marcella Capaldo, Alison Etheridge, Martin Möhle, Jason Schweinsberg, and Anton Wakolbinger, Alpha-stable branching and beta-coalescents, Electron. J. Probab. 10 (2005), no. 9, 303–325.
  • [BBS07] Julien Berestycki, Nathanaël Berestycki, and Jason Schweinsberg, Beta-coalescents and continuous stable random trees, Ann. Probab. 35 (2007), no. 5, 1835–1887.
  • [BD16] Hongwei Bi and Jean-François Delmas, Total length of the genealogical tree for quadratic stationary continuous-state branching processes, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 3, 1321–1350.
  • [Ber06] Jean Bertoin, Random fragmentation and coagulation processes, Cambridge Studies in Advanced Mathematics, vol. 102, Cambridge University Press, Cambridge, 2006.
  • [BFM08] Jean Bertoin, Joaquín Fontbona, and Servet Martínez, On prolific individuals in a supercritical continuous-state branching process, J. Appl. Probab. 45 (2008), no. 3, 714–726.
  • [BLG00] Jean Bertoin and Jean-François Le Gall, The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes, Probab. Theory Related Fields 117 (2000), no. 2, 249–266.
  • [BLG03] Jean Bertoin and Jean-François Le Gall, Stochastic flows associated with coalescent processes, Probab. Theory Related Fields 126 (2003), no. 2, 261–288.
  • [BLG05] Jean Bertoin and Jean-François Le Gall, Stochastic flows associated to coalescent processes. II. Stochastic differential equations, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 3, 307–333.
  • [BLG06] Jean Bertoin and Jean-François Le Gall, Stochastic flows associated with coalescent processes. III. Limit theorems, Illinois J. Math. 50 (2006), no. 1-4, 147–181 (electronic).
  • [CD12] Yu-Ting Chen and Jean-François Delmas, Smaller population size at the MRCA time for stationary branching processes, Ann. Probab. 40 (2012), no. 5, 2034–2068.
  • [CS85] Peter Clifford and Aidan Sudbury, A sample path proof of the duality for stochastically monotone Markov processes, Ann. Probab. 13 (1985), no. 2, 558–565.
  • [DFM14] Xan Duhalde, Clément Foucart, and Chunhua Ma, On the hitting times of continuous-state branching processes with immigration, Stochastic Process. Appl. 124 (2014), no. 12, 4182–4201.
  • [DK99] Peter Donnelly and Thomas G. Kurtz, Particle representations for measure-valued population models, Ann. Probab. 27 (1999), no. 1, 166–205.
  • [DL14] Thomas Duquesne and Cyril Labbé, On the Eve property for CSBP, Electron. J. Probab. 19 (2014), no. 6, 31.
  • [DLG02] Thomas Duquesne and Jean-François Le Gall, Random trees, Lévy processes and spatial branching processes, Astérisque (2002), no. 281, vi+147.
  • [DW07] Thomas Duquesne and Matthias Winkel, Growth of Lévy trees, Probab. Theory Related Fields 139 (2007), no. 3-4, 313–371.
  • [ER10] Steven N. Evans and Peter L. Ralph, Dynamics of the time to the most recent common ancestor in a large branching population, Ann. Appl. Probab. 20 (2010), no. 1, 1–25.
  • [Fel51] William Feller, Diffusion processes in genetics, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, pp. 227–246.
  • [FFK17] Dorrotya Fekete, Joaquín Fontbona, and Andreas Kyprianou, Skeletal stochastic differential equations for continuous-state branching process, to appear in J. App. Probab. 56 (2019)
  • [FH13] Clément Foucart and Olivier Hénard, Stable continuous-state branching processes with immigration and Beta-Fleming-Viot processes with immigration, Electron. J. Probab. 18 (2013), no. 23, 21.
  • [FM16] Clément Foucart and Chunhua Ma, Continuous-state branching processes, extremal processes and super-individuals, Ann. Inst. H. Poincaré Probab. Statist. 55 (2019), no. 2, 1061-1086.
  • [Fou12] Clément Foucart, Generalized Fleming-Viot processes with immigration via stochastic flows of partitions, ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), no. 2, 451–472.
  • [Get80] Ronald Getoor, Transience and recurrence of Markov processes, Seminar on Probability, XIV (Paris, 1978/1979) (French), Lecture Notes in Math., vol. 784, Springer, Berlin, 1980, pp. 397–409.
  • [GH16] Nicolas Grosjean and Thierry Huillet, On a coalescence process and its branching genealogy, J. Appl. Probab. 53 (2016), no. 4, 1156–1165.
  • [Gre74] David Grey, Asymptotic behaviour of continuous time, continuous state-space branching processes, J. Appl. Probability 11 (1974), 669–677.
  • [Gri74] Anders Grimvall, On the convergence of sequences of branching processes, Ann. Probability 2 (1974), 1027–1045.
  • [HJR17] Simon. C. Harris, Samuel. G. G. Johnston, and Matt Roberts, The coalescent structure of continuous-time Galton-Watson trees, arXiv e-prints, March 2017. To appear in Ann. Appl. Probab.
  • [Hén15] Olivier Hénard, The fixation line in the $ \Lambda $-coalescent, Ann. Appl. Probab. 25 (2015), no. 5, 3007–3032.
  • [ILP15] Gautam Iyer, Nicholas Leger, and Robert L. Pego, Limit theorems for Smoluchowski dynamics associated with critical continuous-state branching processes, Ann. Appl. Probab. 25 (2015), no. 2, 675–713.
  • [ILP18] Gautam Iyer, Nicholas Leger, and Robert L. Pego, Coagulation and universal scaling limits for critical galton–watson processes, Advances in Applied Probability 50 (2018), no. 2, 504–542.
  • [Jiř58] Miloslav Jiřina, Stochastic branching processes with continuous state space, Czechoslovak Math. J. 8 (1958), no. 83, 292–313.
  • [Jiř69] Miloslav Jiřina, On Feller’s branching diffusion processes, Časopis Pěst. Mat. 94 (1969), 84–90, 107.
  • [JL19+] Samuel G.G. Johnston and Amaury Lambert, The coalescent structure of samples from branching processes: a unifying poissonisation approach, In preparation, 2019+.
  • [Joh19] Samuel G.G. Johnston, The genealogy of Galton-Watson trees, Electron. J. Probab. 24 (2019), no. 94, 35. MR not yet available.
  • [Kal02] Olav Kallenberg, Foundations of modern probability, second ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002.
  • [KM18] Jonas Kukla and Martin Möhle, On the block counting process and the fixation line of the Bolthausen-Sznitman coalescent, Stochastic Process. Appl. 128 (2018), no. 3, 939–962.
  • [Kol11] Vassili Kolokol’tsov, Stochastic monotonicity and duality of one-dimensional Markov processes, Mat. Zametki 89 (2011), no. 5, 694–704.
  • [KP08] Andreas Kyprianou and Juan-Carlos Pardo, Continuous-state branching processes and self-similarity, J. Appl. Probab. 45 (2008), no. 4, 1140–1160.
  • [Kyp14] Andreas E. Kyprianou, Fluctuations of Lévy processes with applications, second ed., Universitext, Springer, Heidelberg, 2014, Introductory lectures.
  • [Lab14a] Cyril Labbé, From flows of $\Lambda $-Fleming-Viot processes to lookdown processes via flows of partitions, Electron. J. Probab. 19 (2014), no. 55, 49.
  • [Lab14b] Cyril Labbé, Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 3, 732–769.
  • [Lam67a] John Lamperti, Continuous state branching processes, Bull. Amer. Math. Soc. 73 (1967), 382–386.
  • [Lam67b] John Lamperti, The limit of a sequence of branching processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 (1967), 271–288.
  • [Lam03] Amaury Lambert, Coalescence times for the branching process, Adv. in Appl. Probab. 35 (2003), no. 4, 1071–1089.
  • [Lam07] Amaury Lambert, Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct, Electron. J. Probab. 12 (2007), no. 14, 420–446.
  • [Le14] Vi Le, Coalescence times for the Bienaymé-Galton-Watson process, J. Appl. Probab. 51 (2014), no. 1, 209–218.
  • [LGLJ98] Jean-Francois Le Gall and Yves Le Jan, Branching processes in Lévy processes: the exploration process, Ann. Probab. 26 (1998), no. 1, 213–252.
  • [Li00] Zeng-Hu Li, Asymptotic behaviour of continuous time and state branching processes, J. Austral. Math. Soc. Ser. A 68 (2000), no. 1, 68–84.
  • [Li11] Zenghu Li, Measure-valued branching Markov processes, Probability and its Applications (New York), Springer, Heidelberg, 2011.
  • [LP13] Amaury Lambert and Lea Popovic, The coalescent point process of branching trees, Ann. Appl. Probab. 23 (2013), no. 1, 99–144.
  • [LPLG08] Yangrong Li, Anthony G. Pakes, Jia Li, and Anhui Gu, The limit behavior of dual Markov branching processes, J. Appl. Probab. 45 (2008), no. 1, 176–189.
  • [LUB17] Amaury Lambert and Gerónimo Uribe Bravo, The comb representation of compact ultrametric spaces, p-Adic Numbers, Ultrametric Analysis and Applications 9 (2017), no. 1, 22–38.
  • [Möh15] Martin Möhle, The Mittag-Leffler process and a scaling limit for the block counting process of the Bolthausen-Sznitman coalescent, ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015), no. 1, 35–53.
  • [Mor58] Patrick Moran, Random processes in genetics, Proc. Cambridge Philos. Soc. 54 (1958), 60–71.
  • [MS01] Martin Möhle and Serik Sagitov, A classification of coalescent processes for haploid exchangeable population models, Ann. Probab. 29 (2001), no. 4, 1547–1562.
  • [Par08] Étienne Pardoux, Continuous branching processes: the discrete hidden in the continuous, ARIMA Rev. Afr. Rech. Inform. Math. Appl. 9 (2008), 211–229.
  • [Pit97] Jim Pitman, Partition structures derived from Brownian motion and stable subordinators, Bernoulli 3 (1997), no. 1, 79–96.
  • [Pit99] Jim Pitman, Coalescents with multiple collisions, Ann. Probab. 27 (1999), no. 4, 1870–1902.
  • [Pop04] Lea Popovic, Asymptotic genealogy of a critical branching process, Ann. Appl. Probab. 14 (2004), no. 4, 2120–2148.
  • [Pro56] Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen. 1 (1956), 177–238.
  • [PY82] Jim Pitman and Marc Yor, A decomposition of Bessel bridges, Z. Wahrsch. Verw. Gebiete 59 (1982), no. 4, 425–457.
  • [Sag99] Serik Sagitov, The general coalescent with asynchronous mergers of ancestral lines, J. Appl. Probab. 36 (1999), no. 4, 1116–1125.
  • [Sch00] Jason Schweinsberg, Coalescents with simultaneous multiple collisions, Electron. J. Probab. 5 (2000), Paper no. 12, 50.
  • [Sch03] Jason Schweinsberg, Coalescent processes obtained from supercritical Galton-Watson processes, Stochastic Process. Appl. 106 (2003), no. 1, 107–139.
  • [Sie76] David Siegmund, The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes, Ann. Probability 4 (1976), no. 6, 914–924.
  • [Sil68] Martin Silverstein, A new approach to local times, J. Math. Mech. 17 (1967/1968), 1023–1054.
  • [SY84] Ken-iti Sato and Makoto Yamazato, Operator-self-decomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stochastic Process. Appl. 17 (1984), no. 1, 73–100.
  • [Whit80] Ward Whitt, Some useful functions for functional limit theorems, Math. Oper. Res. 5 (1980), no. 1, 67–85.