Electronic Journal of Probability
- Electron. J. Probab.
- Volume 24 (2019), paper no. 100, 25 pp.
Arbitrary many walkers meet infinitely often in a subballistic random environment
Alexis Devulder, Nina Gantert, and Françoise Pène
Full-text: Open access
Abstract
We consider $d$ independent walkers in the same random environment in $ \mathbb{Z} $. Our assumption on the law of the environment is such that a single walker is transient to the right but subballistic. We show that — no matter what $d$ is — the $d$ walkers meet infinitely often, i.e. there are almost surely infinitely many times for which all the random walkers are at the same location.
Article information
Source
Electron. J. Probab., Volume 24 (2019), paper no. 100, 25 pp.
Dates
Received: 30 November 2018
Accepted: 17 July 2019
First available in Project Euclid: 18 September 2019
Permanent link to this document
https://projecteuclid.org/euclid.ejp/1568793794
Digital Object Identifier
doi:10.1214/19-EJP344
Subjects
Primary: 60K37: Processes in random environments 60G50: Sums of independent random variables; random walks
Keywords
random walk random environment collisions recurrence transience
Rights
Creative Commons Attribution 4.0 International License.
Citation
Devulder, Alexis; Gantert, Nina; Pène, Françoise. Arbitrary many walkers meet infinitely often in a subballistic random environment. Electron. J. Probab. 24 (2019), paper no. 100, 25 pp. doi:10.1214/19-EJP344. https://projecteuclid.org/euclid.ejp/1568793794
References
- [1] Andreoletti, P.: A limit result for a system of particles in random environment. J. Stat. Phys. 131 (2008), 235–246.
- [2] Andreoletti, P. and Devulder, A.: Localization and number of visited valleys for a transient diffusion in random environment. Electron. J. Probab. 20 (2015), no. 56, 1–58.
- [3] Andreoletti, P., Devulder, A. and Véchambre, G.: Renewal structure and local time for diffusions in random environment. ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016), 863–923.Zentralblatt MATH: 1350.60107
- [4] Barlow, M., Peres, Y. and Sousi, P.: Collisions of random walks Ann. Inst. H. Poincaré Probab. Stat. 48 (2012), no. 4, 922–946.Zentralblatt MATH: 1285.60073
Digital Object Identifier: doi:10.1214/12-AIHP481
Project Euclid: euclid.aihp/1353098434 - [5] Benjamini, I., Pemantle, R. and Peres, Y.: Martin capacity for Markov chains. Ann. Probab. 23 (1995), 1332–1346.Zentralblatt MATH: 0840.60068
Digital Object Identifier: doi:10.1214/aop/1176988187
Project Euclid: euclid.aop/1176988187 - [6] Bertoin, J.: Splitting at the infimum and excursions in half-lines for random walks and Lévy processes. Stochastic Process. Appl. 47 (1993), no. 1, 17–35.
- [7] Brox, Th.: A one-dimensional diffusion process in a Wiener medium. Ann. Probab. 14 (1986), 1206–1218.Zentralblatt MATH: 0608.60072
Digital Object Identifier: doi:10.1214/aop/1176992363
Project Euclid: euclid.aop/1176992363 - [8] Campari, R. and Cassi, D.: Random collisions on branched networks: How simultaneous diffusion prevents encounters in inhomogeneous structures. Physical Review E 86 (2012), no. 2.
- [9] Chen, X. and Chen, D.: Two random walks on the open cluster of $ \mathbb{Z} ^{2}$ meet infinitely often. Science China Mathematics 53 (2010), 1971–1978.
- [10] Chen, X. and Chen, D.: Some sufficient conditions for infinite collisions of simple random walks on a wedge comb. Electron. J. Probab. 16 (2011), no. 49, 1341–1355.Zentralblatt MATH: 1244.60069
- [11] Chen. D., Wei, B. and Zhang, F.: A note on the finite collision property of random walks. Statistics and Probability Letters 78 (2008), 1742–1747.
- [12] Chen, X.: Gaussian bounds and collisions of variable speed random walks on lattices with power law conductances. Stoch. Process Appl. 126 (2016), no. 10, 3041–3064.
- [13] Dembo, A., Gantert, N., Peres, Y., Shi, Z.: Valleys and the maximum local time for random walk in random environment. Probab. Theory Related Fields 137 (2007), 443–473.
- [14] Devulder, A.: Persistence of some additive functionals of Sinai’s walk. Ann. Inst. H. Poincaré Probab. Stat. 52 (2016), 1076–1105.Zentralblatt MATH: 1350.60110
Digital Object Identifier: doi:10.1214/15-AIHP679
Project Euclid: euclid.aihp/1469723512 - [15] Devulder, A., Gantert, N., Pène, F.: Collisions of several walkers in recurrent random environments. Electron. J. Probab. 23 (2018), no. 90, 1–34.
- [16] Dolgopyat, D. and Goldsheid, I.: Quenched limit theorems for nearest neighbour random walks in 1D random environment. Comm. Math. Phys. 315 (2012), 241–277.
- [17] Dvoretzky, A. and Erdös, P.: Some problems on random walk in space. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 (1951), 353–367, University of California Press, Berkeley and Los Angeles.
- [18] Enriquez, N., Sabot, C. and Zindy, O.: Limit laws for transient random walks in random environment on Z. Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2469–2508.
- [19] Enriquez, N., Sabot, C. and Zindy, O.: Aging and quenched localization for one dimensional random walks in random environment in the sub-ballistic regime. Bull. Soc. Math. France 137 (2009), 423–452.
- [20] Gallesco, C.: Meeting time of independent random walks in random environment. ESAIM Probab. Stat. 17 (2013), 257–292.
- [21] Gantert, N., Kochler M. and Pène, F.: On the recurrence of some random walks in random environment. ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014), 483–502.Zentralblatt MATH: 1301.60112
- [22] Golosov, A. O.: Localization of random walks in one-dimensional random environments. Comm. Math. Phys. 92 (1984), no. 4, 491–506.Zentralblatt MATH: 0534.60065
Digital Object Identifier: doi:10.1007/BF01215280
Project Euclid: euclid.cmp/1103940927 - [23] Hutchcroft, T. and Peres, Y.: Collisions of random walks in reversible random graphs. Electron. Commun. Probab. 20 (2015), no. 63, 1–6.
- [24] Iglehart, D.L.: Extreme values in the GI/G/1 queue. Ann. Math. Statist. 43 (1972), 627–635.Zentralblatt MATH: 0238.60072
Digital Object Identifier: doi:10.1214/aoms/1177692642
Project Euclid: euclid.aoms/1177692642 - [25] Jara M. and Peterson J.: Hydrodynamic limit for a system of independent, sub-ballistic random walks in a common random environment. Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017), 1747–1792.Zentralblatt MATH: 1382.60121
Digital Object Identifier: doi:10.1214/16-AIHP770
Project Euclid: euclid.aihp/1511773725 - [26] Kesten, H., Kozlov, M.V. and Spitzer, F.: A limit law for random walk in a random environment. Compositio Math. 30 (1975), 145–168.Zentralblatt MATH: 0388.60069
- [27] Korshunov, D.: On distribution tail of the maximum of a random walk. Stochastic Process. Appl. 72 (1997), 97–103.
- [28] Krishnapur, M. and Peres, Y.: Recurrent graphs where two independent random walks collide finitely often. Electron. Comm. Probab 9 (2004), 72–81.
- [29] Neveu, J.: Bases mathématiques du calcul des probabilités, Masson et Cie éditeurs, Paris, 1964, xiii+203 pp.
- [30] Peterson, J.: Systems of one-dimensional random walks in a common random environment. Electron. J. Probab. 15 (2010), no. 32, 1024–1040.
- [31] Peterson, J.: Strong transience of one-dimensional random walk in a random environment. Electron. C. Probab. 20 (2015), 1–10.
- [32] Peterson, J. and Seppäläinen T.: Current fluctuations of a system of one-dimensional random walks in random environment. Ann. Probab. 38 (2010), no. 6, 2258–2294.Zentralblatt MATH: 1210.60109
Digital Object Identifier: doi:10.1214/10-AOP537
Project Euclid: euclid.aop/1285334206 - [33] Peterson, J. and Zeitouni, O.: Quenched limits for transient, zero speed one-dimensional random walk in random environment. Ann. Probab. 37 (2009), no. 1, 143–188.Zentralblatt MATH: 1179.60070
Digital Object Identifier: doi:10.1214/08-AOP399
Project Euclid: euclid.aop/1234881687 - [34] Pólya, G.: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math. Ann. 84 (1921), 149–160.
- [35] Pólya, G.: Collected papers, Vol IV. Probability; combinatorics; teaching and learning in mathematics. Edited by Gian-Carlo Rota, M. C. Reynolds and R. M. Shortt. Mathematicians of Our Time, 22. MIT Press, Cambridge, MA, 1984. ix+642 pp.
- [36] Shi, Z. and Zindy, O.: A weakness in strong localization for Sinai’s walk. Ann. Probab. 35 (2007), no. 3, 1118–1140.Zentralblatt MATH: 1117.60091
Digital Object Identifier: doi:10.1214/009117906000000863
Project Euclid: euclid.aop/1178804324 - [37] Sinai, Ya. G.: The limiting behavior of a one-dimensional random walk in a random medium. Th. Probab. Appl. 27 (1982), 256–268.Zentralblatt MATH: 0505.60086
- [38] Solomon, F.: Random walks in a random environment. Ann. Probab. 3 (1975), 1–31.Zentralblatt MATH: 0305.60029
Digital Object Identifier: doi:10.1214/aop/1176996444
Project Euclid: euclid.aop/1176996444 - [39] Zeitouni, O.: Lecture notes on random walks in random environment. École d’été de probabilités de Saint-Flour 2001. Lecture Notes in Math. 1837 (2004), 189–312. Springer, Berlin.
The Institute of Mathematical Statistics and the Bernoulli Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Collisions of several walkers in recurrent random environments
Devulder, Alexis, Gantert, Nina, and Pène, Françoise, Electronic Journal of Probability, 2018 - Collisions of random walks in reversible random graphs
Hutchcroft, Tom and Peres, Yuval, Electronic Communications in Probability, 2015 - A $0$-$1$ law for vertex-reinforced random walks on $\mathbb{Z}$
with weight of order $k^\alpha$, $\alpha\in[0,1/2)$
Schapira, Bruno, Electronic Communications in Probability, 2012
- Collisions of several walkers in recurrent random environments
Devulder, Alexis, Gantert, Nina, and Pène, Françoise, Electronic Journal of Probability, 2018 - Collisions of random walks in reversible random graphs
Hutchcroft, Tom and Peres, Yuval, Electronic Communications in Probability, 2015 - A $0$-$1$ law for vertex-reinforced random walks on $\mathbb{Z}$
with weight of order $k^\alpha$, $\alpha\in[0,1/2)$
Schapira, Bruno, Electronic Communications in Probability, 2012 - Recurrent Graphs where Two Independent Random Walks Collide Finitely Often
Krishnapur, Manjunath and Peres, Yuval, Electronic Communications in Probability, 2004 - Competing Particle Systems Evolving by I.I.D. Increments
Shkolnikov, Mykhaylo, Electronic Journal of Probability, 2009 - Random interlacements and amenability
Teixeira, Augusto and Tykesson, Johan, The Annals of Applied Probability, 2013 - Disorder, entropy and harmonic functions
Benjamini, Itai, Duminil-Copin, Hugo, Kozma, Gady, and Yadin, Ariel, The Annals of Probability, 2015 - A special set of exceptional times for dynamical random walk on $Z^2$
Amir, Gideon and Hoffman, Christopher, Electronic Journal of Probability, 2008 - On the transience of random interlacements
Rath, Balazs and Sapozhnikov, Artem, Electronic Communications in Probability, 2011 - Excited Random Walk
Benjamini, Itai and Wilson, David, Electronic Communications in Probability, 2003