Electronic Journal of Probability

$k$-cut on paths and some trees

Xing Shi Cai, Cecilia Holmgren, Luc Devroye, and Fiona Skerman

Full-text: Open access

Abstract

We define the (random) $k$-cut number of a rooted graph to model the difficulty of the destruction of a resilient network. The process is as the cut model of Meir and Moon [21] except now a node must be cut $k$ times before it is destroyed. The first order terms of the expectation and variance of $\mathcal{X} _{n}$, the $k$-cut number of a path of length $n$, are proved. We also show that $\mathcal{X} _{n}$, after rescaling, converges in distribution to a limit $\mathcal{B} _{k}$, which has a complicated representation. The paper then briefly discusses the $k$-cut number of some trees and general graphs. We conclude by some analytic results which may be of interest.

Article information

Source
Electron. J. Probab., Volume 24 (2019), paper no. 53, 22 pp.

Dates
Received: 9 April 2018
Accepted: 7 May 2019
First available in Project Euclid: 5 June 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1559700303

Digital Object Identifier
doi:10.1214/19-EJP318

Zentralblatt MATH identifier
07068784

Subjects
Primary: 60C05: Combinatorial probability

Keywords
cutting k-cut random trees

Rights
Creative Commons Attribution 4.0 International License.

Citation

Cai, Xing Shi; Holmgren, Cecilia; Devroye, Luc; Skerman, Fiona. $k$-cut on paths and some trees. Electron. J. Probab. 24 (2019), paper no. 53, 22 pp. doi:10.1214/19-EJP318. https://projecteuclid.org/euclid.ejp/1559700303


Export citation

References

  • [1] Louigi Addario-Berry, Nicolas Broutin, and Cecilia Holmgren, Cutting down trees with a Markov chainsaw, Ann. Appl. Probab. 24 (2014), no. 6, 2297–2339.
  • [2] M. Ahsanullah, Record values–theory and applications, University Press of America, Inc., Lanham, MD, 2004.
  • [3] Xing Shi Cai and Cecilia Holmgren, Cutting resilient networks – complete binary trees, arXiv e-prints (2018).
  • [4] Xing Shi Cai, Cecilia Holmgren, Svante Janson, Tony Johansson, and Fiona Skerman, Inversions in Split Trees and Conditional Galton–Watson Trees, Combinatorics, Probability and Computing 28 (2019), no. 3, 335–364 (en).
  • [5] K. N. Chandler, The distribution and frequency of record values, J. Roy. Statist. Soc. Ser. B. 14 (1952), 220–228.
  • [6] D. Dagon, G. Gu, C. P. Lee, and W. Lee, A taxonomy of botnet structures, Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), 2007, pp. 325–339.
  • [7] Luc Devroye, Universal limit laws for depths in random trees, SIAM J. Comput. 28 (1999), no. 2, 409–432.
  • [8] Michael Drmota, Random Trees: An Interplay between Combinatorics and Probability, Springer-Verlag.
  • [9] Michael Drmota, Alex Iksanov, Martin Moehle, and Uwe Roesler, A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree, Random Structures Algorithms 34 (2009), no. 3, 319–336.
  • [10] Rick Durrett, Probability: Theory and examples, fourth ed., Cambridge Series in Statistical and Probabilistic Mathematics, vol. 31, Cambridge University Press, Cambridge, 2010.
  • [11] Michael Fuchs, Hsien-Kuei Hwang, and Ralph Neininger, Profiles of random trees: limit theorems for random recursive trees and binary search trees, Algorithmica 46 (2006), no. 3-4, 367–407.
  • [12] Cecilia Holmgren, Random records and cuttings in binary search trees, Combin. Probab. Comput. 19 (2010), no. 3, 391–424.
  • [13] Cecilia Holmgren, A weakly 1-stable distribution for the number of random records and cuttings in split trees, Adv. in Appl. Probab. 43 (2011), no. 1, 151–177.
  • [14] Cecilia Holmgren, Novel characteristic of split trees by use of renewal theory, Electron. J. Probab. 17 (2012), no. 5, 27.
  • [15] Alex Iksanov and Martin Möhle, A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree, Electron. Comm. Probab. 12 (2007), 28–35.
  • [16] Svante Janson, Random records and cuttings in complete binary trees, Mathematics and Computer Science. III, Trends Math., Birkhäuser, Basel, 2004, pp. 241–253.
  • [17] Svante Janson, Random cutting and records in deterministic and random trees, Random Structures Algorithms 29 (2006), no. 2, 139–179.
  • [18] Svante Janson, Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation, Probab. Surv. 9 (2012), 103–252.
  • [19] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan, Continuous univariate distributions. Vol. 1, second ed., Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1994, A Wiley-Interscience Publication.
  • [20] D. B. Karp, Representations and inequalities for generalized hypergeometric functions, J. Math. Sci. (N.Y.) 207 (2015), no. 6, 885–897.
  • [21] A. Meir and J. W. Moon, Cutting down random trees, J. Austral. Math. Soc. 11 (1970), 313–324.
  • [22] A. Meir and J.W. Moon, Cutting down recursive trees, Mathematical Biosciences 21 (1974), no. 3, 173–181.
  • [23] Michael Molloy and Bruce Reed, Graph colouring and the probabilistic method, Algorithms and Combinatorics, vol. 23, Springer-Verlag, Berlin, 2002.
  • [24] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.
  • [25] Alfréd Rényi, Théorie des éléments saillants d’une suite d’observations, Ann. Fac. Sci. Univ. Clermont-Ferrand No. 8 (1962), 7–13.