Electronic Journal of Probability

Confinement of Brownian polymers under geometric area tilts

Pietro Caputo, Dmitry Ioffe, and Vitali Wachtel

Full-text: Open access

Abstract

We consider confinement properties of families of non-colliding Brownian bridges above a hard wall, which are subject to geometrically growing self-potentials of tilted area type. The model is introduced in order to mimic level lines of $2+1$ discrete Solid-On-Solid random interfaces above a hard wall.

Article information

Source
Electron. J. Probab., Volume 24 (2019), paper no. 37, 21 pp.

Dates
Received: 2 October 2018
Accepted: 26 February 2019
First available in Project Euclid: 9 April 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1554775416

Digital Object Identifier
doi:10.1214/19-EJP283

Subjects
Primary: 60F17: Functional limit theorems; invariance principles 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs 82B41: Random walks, random surfaces, lattice animals, etc. [See also 60G50, 82C41]

Keywords
non-intersecting Brownian bridges geometric area tilts Dyson-Ferrari-Spohn diffusion Brownian polymers limiting line ensembles

Rights
Creative Commons Attribution 4.0 International License.

Citation

Caputo, Pietro; Ioffe, Dmitry; Wachtel, Vitali. Confinement of Brownian polymers under geometric area tilts. Electron. J. Probab. 24 (2019), paper no. 37, 21 pp. doi:10.1214/19-EJP283. https://projecteuclid.org/euclid.ejp/1554775416


Export citation

References

  • [1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with formulas, graphs, and mathematical tables, volume 55. Courier Corporation, 1965.
  • [2] Folkmar Bornemann. On the scaling limits of determinantal point processes with kernels induced by Sturm–Liouville operators. SIGMA, Symmetry, Integrability and Geometry: Methods and Applications, 12(83):1–20, 2016.
  • [3] Alexei Borodin, Ivan Corwin, Daniel Remenik, et al. Multiplicative functionals on ensembles of non-intersecting paths. In Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, volume 51, pages 28–58. Institut Henri Poincaré, 2015.
  • [4] Jean Bricmont, A El Mellouki, and Jürg Fröhlich. Random surfaces in statistical mechanics: Roughening, rounding, wetting,... Journal of statistical physics, 42(5-6):743–798, 1986.
  • [5] Pietro Caputo, Eyal Lubetzky, Fabio Martinelli, Allan Sly, and Fabio Lucio Toninelli. Dynamics of $(2+ 1) $-dimensional SOS surfaces above a wall: Slow mixing induced by entropic repulsion. The Annals of Probability, 42(4):1516–1589, 2014.
  • [6] Pietro Caputo, Eyal Lubetzky, Fabio Martinelli, Allan Sly, and Fabio Lucio Toninelli. Scaling limit and cube-root fluctuations in SOS surfaces above a wall. Journal of the European Mathematical Society, 18(5):931–995, 2016.
  • [7] Earl A Coddington and Norman Levinson. Theory of ordinary differential equations. Tata McGraw-Hill Education, 1955.
  • [8] Ivan Corwin and Evgeni Dimitrov. Transversal fluctuations of the asep, stochastic six vertex model, and Hall-Littlewood Gibbsian line ensembles. Communications in Mathematical Physics, pages 1–67, 2018.
  • [9] Ivan Corwin and Alan Hammond. Brownian Gibbs property for Airy line ensembles. Inventiones mathematicae, 195(2):441–508, 2014.
  • [10] Maurice Duits. On global fluctuations for non-colliding processes. The Annals of Probability, 46(3):1279–1350, 2018.
  • [11] Patrik L Ferrari and Herbert Spohn. Step fluctuations for a faceted crystal. Journal of statistical physics, 113(1-2):1–46, 2003.
  • [12] Patrik L Ferrari, Herbert Spohn, et al. Constrained Brownian motion: fluctuations away from circular and parabolic barriers. The Annals of Probability, 33(4):1302–1325, 2005.
  • [13] Dmitry Ioffe and Senya Shlosman. Formation of facets for an effective model of crystal growth. arXiv preprint arXiv:1704.06760, 2017.
  • [14] Dmitry Ioffe, Senya Shlosman, and Fabio Lucio Toninelli. Interaction versus entropic repulsion for low temperature Ising polymers. Journal of Statistical Physics, 158(5):1007–1050, 2015.
  • [15] Dmitry Ioffe, Senya Shlosman, and Yvan Velenik. An invariance principle to Ferrari–Spohn diffusions. Communications in Mathematical Physics, 336(2):905–932, 2015.
  • [16] Dmitry Ioffe and Yvan Velenik. Low-temperature interfaces: Prewetting, layering, faceting and Ferrari-Spohn diffusions. Mark. Proc. Rel. Fields, 24:487–537, 2018.
  • [17] Dmitry Ioffe, Yvan Velenik, and Vitali Wachtel. Dyson Ferrari–Spohn diffusions and ordered walks under area tilts. Probability Theory and Related Fields, pages 1–37, 2016.
  • [18] Kurt Johansson. Random matrices and determinantal processes. In Mathematical Statistical Physics, Session LXXXIII: Lecture Notes of the Les Houches Summer School, 2005.
  • [19] Kurt Johansson. Edge fluctuations of limit shapes. preprint arXiv:1704.06035, 2017.
  • [20] Hubert Lacoin. Wetting and layering for solid-on-solid I: Identification of the wetting point and critical behavior. Communications in Mathematical Physics, pages 1–42, 2017.
  • [21] Pascal Maillard and Ofer Zeitouni. Slowdown in branching brownian motion with inhomogeneous variance. Annales de l’Institut Henri Poincare, Probabilites et Statistiques, 52(3):1144–1160, 2016.
  • [22] Roberto H Schonmann and Senya B Shlosman. Constrained variational problem with applications to the Ising model. Journal of statistical physics, 83(5-6):867–905, 1996.
  • [23] Herbert Spohn. Kardar-Parisi-Zhang equation in one dimension and line ensembles. Pramana, 64(6):847–857, 2005.
  • [24] Yvan Velenik. Entropic repulsion of an interface in an external field. Probability theory and related fields, 129(1):83–112, 2004.
  • [25] Thomas Weiss, Patrik Ferrari, and Herbert Spohn. Reflected Brownian motions in the KPZ universality class. Springer, 2017.