Electronic Journal of Probability

Global fluctuations for 1D log-gas dynamics. Covariance kernel and support

Jeremie Unterberger

Full-text: Open access

Abstract

We consider the hydrodynamic limit in the macroscopic regime of the coupled system of stochastic differential equations,

\[ d\lambda _t^i=\frac{1} {\sqrt{N} } dW_t^i - V'(\lambda _t^i) dt+ \frac{\beta } {2N} \sum _{j\not =i} \frac{dt} {\lambda ^i_t-\lambda ^j_t}, \qquad i=1,\ldots ,N, \qquad \mbox{(0.1)} \]

with $\beta >1$, sometimes called generalized Dyson’s Brownian motion, describing the dissipative dynamics of a log-gas of $N$ equal charges with equilibrium measure corresponding to a $\beta $-ensemble, with sufficiently regular convex potential $V$. The limit $N\to \infty $ is known to satisfy a mean-field Mc Kean-Vlasov equation. Fluctuations around this limit have been shown [39] to define a Gaussian process solving some explicit martingale problem written in terms of a generalized transport equation.

We prove a series of results concerning either the Mc Kean-Vlasov equation for the density $\rho _t$, notably regularity results and time-evolution of the support, or the associated hydrodynamic fluctuation process, whose space-time covariance kernel we compute explicitly.

Article information

Source
Electron. J. Probab., Volume 24 (2019), paper no. 21, 28 pp.

Dates
Received: 6 July 2018
Accepted: 2 March 2019
First available in Project Euclid: 21 March 2019

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1553155301

Digital Object Identifier
doi:10.1214/19-EJP288

Mathematical Reviews number (MathSciNet)
MR3933200

Zentralblatt MATH identifier
1412.60017

Subjects
Primary: 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52) 60F05: Central limit and other weak theorems 60G20: Generalized stochastic processes 60J60: Diffusion processes [See also 58J65] 60J75: Jump processes 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
random matrices Dyson’s Brownian motion log-gas beta-ensembles hydrodynamic limit Stieltjes transform fluctuations support

Rights
Creative Commons Attribution 4.0 International License.

Citation

Unterberger, Jeremie. Global fluctuations for 1D log-gas dynamics. Covariance kernel and support. Electron. J. Probab. 24 (2019), paper no. 21, 28 pp. doi:10.1214/19-EJP288. https://projecteuclid.org/euclid.ejp/1553155301


Export citation

References

  • [1] N. Allegra, J. Dubail, J.-M. Stephan, J. Viti. Inhomogeneous field theory inside the arctic circle, J. Stat. Mech. Theory Exp. 5, 053108 (2016).
  • [2] G. W. Anderson, A. Guionnet, O. Zeitouni. An introduction to random matrices, Cambridge studies in advanced mathematics 118, Cambridge University Press (2010).
  • [3] M. Bender. Global fluctuations in general $\beta $ Dyson Brownian motion, Stoch. Proc. Appl. 118 (6), 1022-1042 (2008).
  • [4] D. Benedetto, E. Cagliotti, J. A. Carrillo, M. Pulvirenti. A non-Maxwell steady distribution for one-dimensional granular media, J. Stat. Phys. 91, 979–990 (1998).
  • [5] P. Biane. On the Free Convolution with a Semi-circular Distribution, Indiana University Mathematics Journal 46 (3), 705–718 (1997).
  • [6] M. Campostrini, E. Vicari. Equilibrium and off-equilibrium trap-size scaling in 1D ultracold bosonic gases, Phys. Rev. A82, 063636 (2010).
  • [7] J. Carrillo, R. McCann, C. Villani. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericanan 19, 971–1018 (2003).
  • [8] A. Dembo, O. Zeitouni. Large deviations techniques and applications, Applications of Mathematics 38, Springer (2010).
  • [9] J. Dubail, J.-M. Stephan, J. Viti, P. Calabrese. Conformal Field Theory for Inhomogeneous One-dimensional Quantum Systems: the Example of Non-Interacting Fermi Gases, SciPost Phys. 2, 002 (2017).
  • [10] M. Duits. On global fluctuations for non-colliding processes, arXiv:1510.08248.
  • [11] F. J. Dyson. A Brownian-motion model of the eigenvalues of a random matrix, J. Math. Phys. 3, 1191–1198 (1962).
  • [12] S. N. Ethier, T. G. Kurtz. Markov proceses: characterization and convergence, Wiley, New York (1986).
  • [13] P. J. Forrester, Log-gases and random matrices, Princeton University Press (2010).
  • [14] T. Nagao, P. J. Forrester. Multilevel dynamical correlation functions for Dyson’s Brownian model of random matrices, Phys. Lett. A 247, 42–46 (1998).
  • [15] M. Freidlin, A. Wentzell. Random perturbations of dynamical systems, Grundlehren der mathematischen Wissenschaften 260, Springer (2012).
  • [16] Y. V. Fyodorov, B. A. Khoruzhenko, N. J. Simm. Fractional Brownian motion with Hurst index $H=0$ and the Gaussian Unitary Ensemble, Ann. Probab. 44 (4), 2980-3031 (2016).
  • [17] R. J. Goldston, P. H. Rutherford. An introduction to plasma physics, IOP Publishing (1995).
  • [18] M. Hairer. An introduction to stochastic PDEs, arXiv:0907.4178.
  • [19] S. Israelsson. Asymptotic fluctuations of a particle system with singular interaction, Stoch. Proc. Appl. 93, 25–56 (2001).
  • [20] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices, Duke Math J 91 (1), 15166204 (1998).
  • [21] I. Karatzas, S. E. Shreve. Brownian motion and stochastic calculus, Springer (1991).
  • [22] T. Kato. Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5, 208–234 (1953).
  • [23] C. Kipnis, C. Landim. Scaling limits of interacting particle systems, Grundlehren der mathematischen Wissenschaften 320, Springer (1999).
  • [24] S. Li, X.-D; Li, Y.-X. Xie. Generalized Dyson Brownian motion, McKean-Vlasov equation and eigenvalues of random matrices, arXiv:1303.1240. On the Law of Large Numbers for the empirical measure process of Generalized Dyson Brownian motion, arXiv:1407.7234.
  • [25] A. Lodhia, N. Simm. Mesoscopic linear statistics of Wigner matrices, arXiv:1503.03533.
  • [26] A. F. Macedo, A. M. S. Macêdo. Brownian motion ensembles of random matrix theory: A classification scheme and an integral transform method, Nucl. Phys. B 752, 439-475 (2006).
  • [27] M. L. Mehta. Random matrices, Academic Press (1991).
  • [28] I. Mitoma. Tightness of probabilities on $C([0,1];{\cal S}')$ and $D([0,1];{\cal S}')$, Ann. Prob. 11 (4), 989–999 (1983).
  • [29] F. Otto. The geometry of dissipative evolution equations: the porous medium equation, Comm. Part. Diff. Eq. 26, 101–174 (2001).
  • [30] F. Otto, C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173, 361–400 (2000).
  • [31] L. Pastur, M. Shcherbina. Eigenvalue distribution of large random matrices, Mathematical surveys and monographs 171, American Mathematical Society (2011).
  • [32] A. Pazy. Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44, Springer-Verlag (1983).
  • [33] L. Rogers, Z. Shi. Interacting Brownian particles and the Wigner law, Prob. Th. Rel. Fields 95 (4), 555–570 (1993).
  • [34] W. Rudin. Real and complex analysis, McGraw-Hill series in higher mathematics (1966).
  • [35] H. Spohn. Bosonization, vicinal surfaces, and hydrodynamic fluctuation theory, Phys. Rev. E60 (3), 6411–6420 (1999).
  • [36] H. Tanabe. Equations of evolution, Monographs and studies in mathematics 6, Pitman (1979).
  • [37] T. Tao’s blog on Brownian motion, https://terrytao.wordpress.com/2010/01/18/254a-notes-3b-brownian-motion-and-dyson-brownian-motion/.
  • [38] F. Treves. Topological vector spaces, distributions and kernels, Academic Press, New York (1967).
  • [39] J. Unterberger. Global fluctuations for 1D log-gas dynamics, to appear at: Stoch. Proc. Appl. (preprint arXiv:1607.00760).
  • [40] B. Valko, B. Virag. Continuum limits of random matrices and the Brownian carousel, Invent. math. 177, 463–508 (2009).
  • [41] C. Villani. Optimal transport, Old and New, Springer-Verlag, Berlin (2009).