Electronic Journal of Probability

Metastability of hard-core dynamics on bipartite graphs

Frank den Hollander, Francesca R. Nardi, and Siamak Taati

Full-text: Open access

Abstract

We study the metastable behaviour of a stochastic system of particles with hard-core interactions in a high-density regime. Particles sit on the vertices of a bipartite graph. New particles appear subject to a neighbourhood exclusion constraint, while existing particles disappear, all according to independent Poisson clocks. We consider the regime in which the appearance rates are much larger than the disappearance rates, and there is a slight imbalance between the appearance rates on the two parts of the graph. Starting from the configuration in which the weak part is covered with particles, the system takes a long time before it reaches the configuration in which the strong part is covered with particles. We obtain a sharp asymptotic estimate for the expected transition time, show that the transition time is asymptotically exponentially distributed, and identify the size and shape of the critical droplet representing the bottleneck for the crossover. For various types of bipartite graphs the computations are made explicit. Proofs rely on potential theory for reversible Markov chains, and on isoperimetric results.

Article information

Source
Electron. J. Probab., Volume 23 (2018), paper no. 97, 65 pp.

Dates
Received: 12 January 2018
Accepted: 8 August 2018
First available in Project Euclid: 21 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1537495434

Digital Object Identifier
doi:10.1214/18-EJP210

Mathematical Reviews number (MathSciNet)
MR3862612

Zentralblatt MATH identifier
06964791

Subjects
Primary: 60C05: Combinatorial probability 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60K37: Processes in random environments 82C27: Dynamic critical phenomena

Keywords
interacting particle systems bipartite graphs potential theory metastability isoperimetric problems

Rights
Creative Commons Attribution 4.0 International License.

Citation

den Hollander, Frank; Nardi, Francesca R.; Taati, Siamak. Metastability of hard-core dynamics on bipartite graphs. Electron. J. Probab. 23 (2018), paper no. 97, 65 pp. doi:10.1214/18-EJP210. https://projecteuclid.org/euclid.ejp/1537495434


Export citation

References

  • [1] D. Aldous and J. A. Fill, Reversible Markov chains and random walks on graphs, Unfinished monograph, 2002 (recompiled 2014). [http://www.stat.berkeley.edu/ aldous/RWG/book.html]
  • [2] L. Alonso and R. Cerf, The three dimensional polyominoes of minimal area, The Electronic Journal of Combinatorics 3 (1996), no. 1, #R27.
  • [3] G. Ben Arous and R. Cerf, Metastability of the three-dimensional Ising model on a torus at very low temperatures, Electronic Journal of Probability 1 (1996), no. 10.
  • [4] J. Beltrán and C. Landim, Tunneling and metastability of continuous time Markov chains, Journal of Statistical Physics 140 (2010), no. 6, 1065–1114.
  • [5] J. van den Berg and J. E. Steif, Percolation and the hard-core lattice gas model, Stochastic Processes and their Applications 49 (1994), 179–197.
  • [6] K. A. Berman and M. H. Konsowa, Random paths and cuts, electrical networks, and reversible Markov chains, SIAM Journal of Discrete Mathematics 3 (1990), no. 3, 311–319.
  • [7] S. L. Bezrukov, On the construction of solutions of a discrete isoperimetric problem in Hamming space, Mathematics of the USSR-Sbornik 63 (1989), no. 1.
  • [8] S. L. Bezrukov, Isoperimetric problems in discrete spaces, Extremal Problems in Finite Sets, Bolyai Society Mathematical Studies, vol. 3, 1994, pp. 59–91.
  • [9] S. Borst, F. den Hollander, F. R. Nardi, and M. Sfragara, Transition time asymptotics of queue-based activation protocols in random-access networks, Preprint (2018). arXiv:1807.05851
  • [10] S. Borst, F. den Hollander, F. R. Nardi, and S. Taati, Hitting-time asymptotics in bipartite hard-core interaction models with time-varying rates, In preparation (2018).
  • [11] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability and small eigenvalues in Markov chains, Journal of Physics A: Mathematical and General 33 (2000), no. 46, L447–L451.
  • [12] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in stochastic dynamics of disordered mean-field models, Probability Theory and Related Fields 119 (2001), no. 1, 99–161.
  • [13] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability and low lying spectra in reversible Markov chains, Communications in Mathematical Physics 228 (2002), no. 2, 219–255.
  • [14] A. Bovier and F. den Hollander, Metastability: A potential-theoretic approach, Springer, 2015.
  • [15] A. Bovier, F. den Hollander, and F. R. Nardi, Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary, Probability Theory and Related Fields 135 (2006), no. 2, 265–310.
  • [16] A. Bovier and F. Manzo, Metastability in Glauber dynamics in the low temperature limit: beyond exponential asymptotics, Journal of Statistical Physics 107 (2002), no. 3–4, 757–779.
  • [17] M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, Metastable behavior of stochastic dynamics: A pathwise approach, Journal of Statistical Physics 35 (1984), no. 5–6, 603–634.
  • [18] E. N. M. Cirillo and F. R. Nardi, Metastability for a stochastic dynamics with a parallel heat bath updating rule, Journal of Statistical Physics 110 (2003), no. 1–2, 183–217.
  • [19] E. N. M. Cirillo and F. R. Nardi, Relaxation height in energy landscapes: An application to multiple metastable states, Journal of Statistical Physics 150 (2013), 1080–1114.
  • [20] E. N. M. Cirillo, F. R. Nardi, and J. Sohier, Metastability for general dynamics with rare transitions: Escape time and critical configurations, Journal of Statistical Physics 161 (2015), 365–403.
  • [21] E. N. M. Cirillo, F. R. Nardi, and C. Spitoni, Metastability for reversible probabilistic cellular automata with self-interaction, Journal of Statistical Physics 132 (2008), no. 3, 431–471.
  • [22] S. Dommers, Metastability of the Ising model on random regular graphs at zero temperature, Probability Theory and Related Fields 167 (2017), no. 1, 305–324.
  • [23] S. Dommers, F. den Hollander, O. Jovanovski, and F. R. Nardi, Metastability for Glauber dynamics on random graphs, Annals of Applied Probability 27 (2016), no. 4, 2130–2158.
  • [24] P. G. Doyle and J. L. Snell, Random walks and electric networks, The Mathematical Association of America, 1984.
  • [25] R. Fernandez, F. Manzo, F. R. Nardi, and E. Scoppola, Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility, Eletronic Journal of Probability 20 (2015), no. 122.
  • [26] R. Fernandez, F. Manzo, F. R. Nardi, E. Scoppola, and J. Sohier, Conditioned, quasi-stationary, restricted measures and escape from metastable states, The Annals of Applied Probability 26 (2016), no. 2, 760–793.
  • [27] A. Gaudillière, E. Olivieri, and E. Scoppola, Nucleation pattern at low temperature for local Kawasaki dynamics in two dimensions, Markov Processes and Related Fields 11 (2005), no. 4, 553–628.
  • [28] G. Grimmett, Probability on graphs, Cambridge University Press, 2010.
  • [29] F. Harary and F. Harborth, Extremal animals, Journal of Combinatorics, Information and System 1 (1976), 1–8.
  • [30] L. H. Harper, Optimal numberings and isoperimetric problems on graphs, Journal of Combinatorial Theory 1 (1966), 385–393.
  • [31] L. H. Harper, Global methods for combinatorial isoperimetric problems, Cambridge University Press, 2004.
  • [32] F. den Hollander and O. Jovanovski, Metastability on the hierarchical lattice, Journal of Physics A: Theoretical and Mathematical 50 (2017), 305001.
  • [33] F. den Hollander, F. R. Nardi, E. Olivieri, and E. Scoppola, Droplet growth for three-dimensional Kawasaki dynamics, Probability Theory and Related Fields 125 (2003), no. 2, 153–194.
  • [34] F. den Hollander, F. R. Nardi, and A. Troiani, Kawasaki dynamics with two types of particles: Stable/metastable configurations and communication heights, Journal of Statistical Physics 145 (2011), 1423–1457.
  • [35] F. den Hollander, E. Olivieri, and E. Scoppola, Metastability and nucleation for conservative dynamics, Journal of Mathematical Physics 41 (2000), no. 3, 1424–1498.
  • [36] O. Jovanovski, Metastability for the Ising model on the hypercube, Journal of Statistical Physics 167 (2017), no. 1, 135–159.
  • [37] J. Keilson, Markov chain models — rarity and exponentiality, Springer-Verlag, 1979.
  • [38] R. Kotecký and E. Olivieri, Shapes of growing droplets—a model of escape from a metastable phase, Journal of Statistical Physics 75 (1994), no. 3–4, 409–506.
  • [39] J. L. Lebowitz and G. Gallavotti, Phase transitions in binary lattice gases, Journal of Mathematical Physics 12 (1971), no. 7, 1129–1133.
  • [40] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times, American Mathematical Society, 2008.
  • [41] R. Lyons and Y. Peres, Probability on trees and networks, Cambridge University Press, 2016.
  • [42] F. Manzo, F. R. Nardi, E. Olivieri, and E. Scoppola, On the essential features of metastability: Tunnelling time and critical configurations, Journal of Statistical Physics 115 (2004), no. 1/2, 591–642.
  • [43] F. R. Nardi, A. Zocca, and S. C. Borst, Hitting times asymptotics for hard-core interactions on grids, Journal of Statistical Physics 162 (2015), no. 2, 522–576.
  • [44] E. J. Neves and R. H. Schonmann, Critical droplets and metastability for a Glauber dynamics at very low temperatures, Communications in Mathematical Physics 137 (1991), no. 2, 209–230.
  • [45] E. Olivieri and M. E. Vares, Large deviations and metastability, Cambridge University Press, 2004.
  • [46] D. Vainsencher and A. M. Bruckstein, On isoperimetrically optimal polyforms, Theoretical Computer Science 406 (2008), 146–159.
  • [47] D.-L. Wang and P. Wang, Discrete isoperimetric problems, SIAM Journal on Applied Mathematics 32 (1977), no. 4, 860–870.
  • [48] A. Zocca, Low-temperature behavior of the multicomponent Widom–Rowlison model on finite square lattices, Journal of Statistical Physics 171 (2018), no. 1, 1–37.
  • [49] A. Zocca, Tunneling of the hard-core model on finite triangular lattices, Random Structures & Algorithms (To appear). arXiv:1701.07004
  • [50] A. Zocca, S. C. Borst, J. S. H. van Leeuwaarden, and F. R. Nardi, Delay performance in random-access grid networks, Performance Evaluation 70 (2013), no. 10, 900–915.