Electronic Journal of Probability

SuperBrownian motion and the spatial Lambda-Fleming-Viot process

Jonathan A. Chetwynd-Diggle and Alison M. Etheridge

Full-text: Open access


It is well known that the dynamics of a subpopulation of individuals of a rare type in a Wright-Fisher diffusion can be approximated by a Feller branching process. Here we establish an analogue of that result for a spatially distributed population whose dynamics are described by a spatial Lambda-Fleming-Viot process (SLFV). The subpopulation of rare individuals is then approximated by a superBrownian motion. This result mirrors [10], where it is shown that when suitably rescaled, sparse voter models converge to superBrownian motion. We also prove the somewhat more surprising result, that by choosing the dynamics of the SLFV appropriately we can recover superBrownian motion with stable branching in an analogous way. This is a spatial analogue of (a special case of) results of [6], who show that the generalised Fleming-Viot process that is dual to the beta-coalescent, when suitably rescaled, converges to a continuous state branching process with stable branching mechanism.

Article information

Electron. J. Probab., Volume 23 (2018), paper no. 71, 36 pp.

Received: 29 May 2017
Accepted: 25 June 2018
First available in Project Euclid: 26 July 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems 60G57: Random measures 60J25: Continuous-time Markov processes on general state spaces 60J68: Superprocesses 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Secondary: 60G51: Processes with independent increments; Lévy processes 60G55: Point processes 60J75: Jump processes 92D10f

spatial Lambda-Fleming-Viot model superprocess stable branching process scaling limits

Creative Commons Attribution 4.0 International License.


Chetwynd-Diggle, Jonathan A.; Etheridge, Alison M. SuperBrownian motion and the spatial Lambda-Fleming-Viot process. Electron. J. Probab. 23 (2018), paper no. 71, 36 pp. doi:10.1214/18-EJP191. https://projecteuclid.org/euclid.ejp/1532570599

Export citation


  • [1] D Aldous. Stopping times and tightness. Ann. Probab., 6, 1978.
  • [2] N H Barton, A M Etheridge, and A Véber. A new model for evolution in a spatial continuum. Electron. J. Probab., 15:162–216, 2010.
  • [3] N H Barton, A M Etheridge, and A Véber. Modelling evolution in a spatial continuum. J. Stat. Mech., page PO1002, 2013.
  • [4] N Berestycki, A M Etheridge, and A Véber. Large-scale behaviour of the spatial $\Lambda $-Fleming-Viot process. Ann. Inst. H. Poincaré, 49(2):374–401, 2013.
  • [5] J Bertoin and J-F Le Gall. Stochastic flows associated to coalescent processes. Prob. Theor. Rel. Fields, 126:261–288, 2003.
  • [6] J Bertoin and J-F Le Gall. Stochastic flows associated to coalescent processes III: Limit theorems. Illinois J Math, 50(1):147–181, 2006.
  • [7] M Birkner, J Blath, M Capaldo, A M Etheridge, M Möhle, J Schweinsberg, and A Wakolbinger. Alpha-stable branching and Beta-coalescents. Elect. J. Probab., 10:303–325, 2005.
  • [8] J T Cox and E A Perkins. Rescaled Lotka-Volterra models converge to super-Brownian motion. Ann. Probab., 33:904–947, 2005.
  • [9] J T Cox, R Durrett, and E A Perkins. Rescaled particle systems converging to super-Brownian motion. In Perplexing problems in probability: Progress in probability 44, pages 269–284. Birkhäuser, Boston, MA, 1999.
  • [10] J T Cox, R Durrett, and E A Perkins. Rescaled voter models converge to super-Brownian motion. Ann. Probab., 28:185–234, 2000.
  • [11] D A Darling and M Kac. On occupation times for Markoff processes. Trans. Amer. Math. Soc., 84:444–458, 1957.
  • [12] D A Dawson. Stochastic evolution equations and related measure processes. J. Multivar. Anal., 5:1–52, 1975.
  • [13] D A Dawson. Measure-valued Markov processes. In École d’été de probabilités de Saint Flour, volume 1541. Springer-Verlag, 1993.
  • [14] N El Karoui and S Roelly. Proprietés de martingales, explosion et representation de Lévy-Khinchine d’une classe du processus de branchement à valeurs mesures. Stoch. Proc. Appl., 38(2):239–266, 1991.
  • [15] A M Etheridge. An introduction to superprocesses, volume 20 of University lecture notes. Amer. Math. Soc., 2000.
  • [16] A M Etheridge. Drift, draft and structure: some mathematical models of evolution. Banach Center Publ., 80:121–144, 2008.
  • [17] A M Etheridge and T G Kurtz. Genealogical constructions of population models. arXiv:1402.6274, 2014.
  • [18] A M Etheridge, A Véber, and F Yu. Rescaling limits of the spatial Lambda-Fleming-Viot process with selection. arXiv:1406.5884, 2014.
  • [19] A M Etheridge, N Freeman, S Penington, and D Straulino. Branching Brownian motion and selection in the Spatial Lambda-Fleming-Viot process. Ann. Appl. Probab. arXiv:1512.03766, 2015.
  • [20] S N Ethier and T G Kurtz. Markov processes: characterization and convergence. Wiley, 1986.
  • [21] S N Evans. Coalescing markov labelled partitions and a continuous sites genetics model with infinitely many types. Ann. Inst. Henri Poincaré, 33:339–358, 1997.
  • [22] N Freeman. Super-Brownian motion is a scaling limit of bursting processes. Chapter 4 of Transfer of Status Thesis, University of Oxford, 2010.
  • [23] I M Gel’fand and G E Shilov. Generalised Functions: Volume 1. Properties and Operations. Translated by E Saletan. Academic Press, 1964.
  • [24] R van der Hofstad and A Sakai. Convergence of the critical finite range contact process to super-brownian motion above the upper critical dimension: The higher point functions. Electron. J. Probab., 15:801–894, 2010.
  • [25] R van der Hofstad and G Slade. Convergence of critical oriented percolation to super-brownian motion above 4+1 dimensions. Ann. Inst. Henri Poincaré Probab. Stat., 39:413–485, 2003.
  • [26] R van der Hofstad, M Holmes, and E A Perkins. A criterion for convergence to super-Brownian motion on path space. Ann. Probab., 45:278–376, 2017.
  • [27] M Holmes. Convergence of lattice trees to super-Brownian motion above the critical dimension. Elect. J. Prob., 13:671–755, 2008.
  • [28] J Jacod and A N Shiryaev. Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2003. ISBN 3-540-43932-3. URL http://dx.doi.org/10.1007/978-3-662-05265-5.
  • [29] A Lambert and E Schertzer. Recovering the Brownian coalescent point process from the Kingman coalescent by conditional sampling. arXiv:1611.01323[math.PR], 2016.
  • [30] E A Perkins. Dawson-Watanabe Superprocesses and Measure-valued diffusions. In École d’été de probabilités de Saint Flour XXIX-1999. Springer-Verlag, 2002.
  • [31] J Schweinsberg. Coalescents obtained from supercritical Galton-Watson processes. Stoch. Proc. Appl., 106:107–139, 2003.
  • [32] A Véber and A Wakolbinger. The spatial Lambda-Fleming-Viot process: an event based construction and a lookdown representation. Ann. Inst. H. Poincaré, 51:570–598, 2015.
  • [33] S Watanabe. A limit theorem of branching processes and continuous state branching processes. J. Math. Kyoto Univ., 8:141–167, 1968.