Electronic Journal of Probability

Non-equilibrium steady states for networks of oscillators

Noé Cuneo, Jean-Pierre Eckmann, Martin Hairer, and Luc Rey-Bellet

Full-text: Open access


Non-equilibrium steady states for chains of oscillators (masses) connected by harmonic and anharmonic springs and interacting with heat baths at different temperatures have been the subject of several studies. In this paper, we show how some of the results extend to more complicated networks. We establish the existence and uniqueness of the non-equilibrium steady state, and show that the system converges to it at an exponential rate. The arguments are based on controllability and conditions on the potentials at infinity.

Article information

Electron. J. Probab., Volume 23 (2018), paper no. 55, 28 pp.

Received: 16 January 2018
Accepted: 13 May 2018
First available in Project Euclid: 7 June 2018

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier

Primary: 82C05: Classical dynamic and nonequilibrium statistical mechanics (general) 60H10: Stochastic ordinary differential equations [See also 34F05] 34C15: Nonlinear oscillations, coupled oscillators 60B10: Convergence of probability measures

non-equilibrium statistical mechanics networks of oscillators geometric ergodicity Hörmander’s condition Lyapunov functions

Creative Commons Attribution 4.0 International License.


Cuneo, Noé; Eckmann, Jean-Pierre; Hairer, Martin; Rey-Bellet, Luc. Non-equilibrium steady states for networks of oscillators. Electron. J. Probab. 23 (2018), paper no. 55, 28 pp. doi:10.1214/18-EJP177. https://projecteuclid.org/euclid.ejp/1528358489

Export citation


  • [1] P. Carmona, Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths, Stochastic Process. Appl. 117 (2007), no. 8, 1076–1092.
  • [2] F. Conrad and M. Grothaus, Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials, J. Evol. Equ. 10 (2010), no. 3, 623–662.
  • [3] B. Cooke, D. P. Herzog, J. C. Mattingly, S. A. McKinley, and S. C. Schmidler, Geometric ergodicity of two-dimensional Hamiltonian systems with a Lennard-Jones-like repulsive potential, Commun. Math. Sci. 15 (2017), no. 7, 1987–2025.
  • [4] N. Cuneo and J.-P. Eckmann, Controlling general polynomial networks, Commun. Math. Phys. 328 (2014), no. 3, 1255–1274.
  • [5] N. Cuneo and J.-P. Eckmann, Non-equilibrium steady states for chains of four rotors, Commun. Math. Phys. 345 (2016), no. 1, 185–221.
  • [6] N. Cuneo, J.-P. Eckmann, and C. Poquet, Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors, Nonlinearity 28 (2015), no. 7, 2397–2421.
  • [7] N. Cuneo and C. Poquet, On the relaxation rate of short chains of rotors interacting with Langevin thermostats, Electron. Commun. Probab. 22 (2017), 8 pp.
  • [8] A. Dymov, Asymptotic behaviour of a network of oscillators coupled to thermostats of finite energy, ArXiv e-prints (2017).
  • [9] J.-P. Eckmann and M. Hairer, Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators, Commun. Math. Phys. 212 (2000), no. 1, 105–164.
  • [10] J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Entropy production in nonlinear, thermally driven Hamiltonian systems, J. Stat. Phys. 95 (1999), no. 1-2, 305–331.
  • [11] J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Commun. Math. Phys. 201 (1999), no. 3, 657–697.
  • [12] J.-P. Eckmann and E. Zabey, Strange heat flux in (an)harmonic networks, J. Stat. Phys. 114 (2004), no. 1-2, 515–523.
  • [13] M. Grothaus and P. Stilgenbauer, A hypocoercivity related ergodicity method for singularly distorted non-symmetric diffusions, Integr. Equ. Oper. Theory 83 (2015), no. 3, 331–379.
  • [14] M. Hairer, A probabilistic argument for the controllability of conservative systems, ArXiv Mathematical Physics e-prints (2005).
  • [15] M. Hairer, How hot can a heat bath get?, Commun. Math. Phys. 292 (2009), no. 1, 131–177.
  • [16] M. Hairer, On Malliavin’s proof of Hörmander’s theorem, Bull. Sci. Math. 135 (2011), no. 6-7, 650–666.
  • [17] M. Hairer and J. C. Mattingly, Slow energy dissipation in anharmonic oscillator chains, Comm. Pure Appl. Math. 62 (2009), no. 8, 999–1032.
  • [18] M. Hairer and J. C. Mattingly, Yet another look at Harris’ ergodic theorem for Markov chains, Seminar on Stochastic Analysis, Random Fields and Applications VI, 2011, pp. 109–117.
  • [19] M. Hairer, A. M. Stuart, and J. Voss, Analysis of SPDEs arising in path sampling. II. The nonlinear case, Ann. Appl. Probab. 17 (2007), no. 5-6, 1657–1706.
  • [20] R. Z. Has’minskii, Stochastic stability of differential equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, vol. 7, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, Translated from the Russian by D. Louvish.
  • [21] D. P. Herzog and J. C. Mattingly, Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials, ArXiv e-prints (2017).
  • [22] R. Höpfner, E. Löcherbach, and M. Thieullen, Ergodicity and limit theorems for degenerate diffusions with time periodic drift. Application to a stochastic Hodgkin-Huxley model, ESAIM Probab. Stat. 20 (2016), 527–554.
  • [23] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171.
  • [24] B. Leimkuhler, E. Noorizadeh, and F. Theil, A gentle stochastic thermostat for molecular dynamics, J. Stat. Phys. 135 (2009), no. 2, 261–277.
  • [25] J. C. Mattingly, A. M. Stuart, and D. J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl. 101 (2002), no. 2, 185–232.
  • [26] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, second ed., Cambridge University Press, Cambridge, 2009, With a prologue by Peter W. Glynn.
  • [27] R. Raquépas, A note on Harris’ ergodic theorem, controllability and perturbations of harmonic networks, ArXiv e-prints (2018).
  • [28] D. Revuz and M. Yor, Continuous martingales and Brownian motion, third ed., Grundlehren der Mathematischen Wissenschaften, vol. 293, Springer-Verlag, Berlin, 1999.
  • [29] L. Rey-Bellet, Ergodic properties of Markov processes, Open quantum systems. II, Lecture Notes in Math., vol. 1881, Springer, Berlin, 2006, pp. 1–39.
  • [30] L. Rey-Bellet and L. E. Thomas, Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators, Commun. Math. Phys. 215 (2000), no. 1, 1–24.
  • [31] L. Rey-Bellet and L. E. Thomas, Exponential convergence to non-equilibrium stationary states in classical statistical mechanics, Commun. Math. Phys. 225 (2002), no. 2, 305–329.
  • [32] D. W. Stroock, Partial differential equations for probabilists, Cambridge Studies in Advanced Mathematics, vol. 112, Cambridge University Press, Cambridge, 2008.
  • [33] D. W. Stroock and S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. III: Probability theory, Univ. California Press, Berkeley, Calif., 1972, pp. 333–359.