Electronic Journal of Probability

Pathwise construction of tree-valued Fleming-Viot processes

Stephan Gufler

Full-text: Open access


In a random complete and separable metric space that we call the lookdown space, we encode the genealogical distances between all individuals ever alive in a lookdown model with simultaneous multiple reproduction events. We construct families of probability measures on the lookdown space and on an extension of it that allows to include the case with dust. From this construction, we read off the tree-valued $\Xi $-Fleming-Viot processes and deduce path properties. For instance, these processes usually have a. s. càdlàg paths with jumps at the times of large reproduction events. In the case of coming down from infinity, the construction on the lookdown space also allows to read off a process with values in the space of measure-preserving isometry classes of compact metric measure spaces, endowed with the Gromov-Hausdorff-Prohorov metric. This process has a. s. càdlàg paths with additional jumps at the extinction times of parts of the population.

Article information

Electron. J. Probab., Volume 23 (2018), paper no. 42, 58 pp.

Received: 2 November 2016
Accepted: 6 April 2018
First available in Project Euclid: 9 May 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60J25: Continuous-time Markov processes on general state spaces 60G09: Exchangeability 92D10: Genetics {For genetic algebras, see 17D92}

lookdown model tree-valued Fleming-Viot process evolving coalescent $\Xi $-coalescent (marked) metric measure space (marked) Gromov-weak topology Gromov-Hausdorff-Prohorov topology

Creative Commons Attribution 4.0 International License.


Gufler, Stephan. Pathwise construction of tree-valued Fleming-Viot processes. Electron. J. Probab. 23 (2018), paper no. 42, 58 pp. doi:10.1214/18-EJP166. https://projecteuclid.org/euclid.ejp/1525852819

Export citation


  • [1] S. Athreya, W. Löhr, and A. Winter, The gap between Gromov-vague and Gromov–Hausdorff-vague topology, Stochastic Process. Appl. 126 (2016), no. 9, 2527–2553.
  • [2] J. Bertoin, Random fragmentation and coagulation processes, Cambridge University Press, Cambridge, 2006.
  • [3] J. Bertoin and J.-F. Le Gall, Stochastic flows associated to coalescent processes, Probab. Theory Related Fields 126 (2003), no. 2, 261–288.
  • [4] M. Birkner, J. Blath, M. Möhle, M. Steinrücken, and J. Tams, A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks, ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009), 25–61.
  • [5] R. M. Blumenthal, Excursions of Markov processes, Probability and its Applications, Birkhäuser Boston, 1992.
  • [6] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001.
  • [7] I. Dahmer and G. Kersting, The total external length of the evolving Kingman coalescent, Probab. Theory Related Fields 167 (2017), 1165–1214.
  • [8] I. Dahmer, R. Knobloch, and A. Wakolbinger, The Kingman tree length process has infinite quadratic variation, Electron. Commun. Probab. 19 (2014), no. 87.
  • [9] A. Depperschmidt, A. Greven, and P. Pfaffelhuber, Marked metric measure spaces, Electron. Commun. Probab. 16 (2011), 174–188.
  • [10] A. Depperschmidt, A. Greven, and P. Pfaffelhuber, Tree-valued Fleming-Viot dynamics with mutation and selection, Ann. Appl. Probab. 22 (2012), no. 6, 2560–2615.
  • [11] A. Depperschmidt, A. Greven, and P. Pfaffelhuber, Path-properties of the tree-valued Fleming-Viot process, Electron. J. Probab. 18 (2013), no. 84.
  • [12] P. Donnelly and T. G. Kurtz, A countable representation of the Fleming-Viot measure-valued diffusion, Ann. Probab. 24 (1996), no. 2, 698–742.
  • [13] P. Donnelly and T. G. Kurtz, Particle representations for measure-valued population models, Ann. Probab. 27 (1999), no. 1, 166–205.
  • [14] S. N. Ethier and T. G. Kurtz, Markov processes, Wiley, New York, 1986.
  • [15] S. N. Evans, Kingman’s coalescent as a random metric space, Stochastic models (Ottawa, ON, 1998), CMS Conf. Proc., vol. 26, Amer. Math. Soc., Providence, RI, 2000, pp. 105–114.
  • [16] S. N. Evans and A. Winter, Subtree prune and regraft: a reversible real tree-valued Markov process, Ann. Probab. 34 (2006), no. 3, 918–961.
  • [17] C. Foucart, Generalized Fleming-Viot processes with immigration via stochastic flows of partitions, ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), no. 2, 451–472.
  • [18] A. Greven, P. Pfaffelhuber, and A. Winter, Convergence in distribution of random metric measure spaces ($\Lambda $-coalescent measure trees), Probab. Theory Related Fields 145 (2009), no. 1–2, 285–322.
  • [19] A. Greven, P. Pfaffelhuber, and A. Winter, Tree-valued resampling dynamics Martingale problems and applications, Probab. Theory Related Fields 155 (2013), no. 3–4, 789–838.
  • [20] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser, Boston, MA, 1999.
  • [21] S. Gufler, Invariance principles for tree-valued Cannings chains (2017). arXiv:1608.08203v2
  • [22] S. Gufler, A representation for exchangeable coalescent trees and generalized tree-valued Fleming-Viot processes, Electron. J. Probab. 23 (2018).
  • [23] O. Hénard, The fixation line in the $\Lambda $-coalescent, Ann. Appl. Probab. 25 (2015), no. 5, 3007–3032.
  • [24] P. Herriger and M. Möhle, Conditions for exchangeable coalescents to come down from infinity, ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), no. 2, 637–665.
  • [25] A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995.
  • [26] G. Kersting, J. Schweinsberg, and A. Wakolbinger, The evolving beta coalescent, Electron. J. Probab. 19 (2014), no. 64.
  • [27] S. Kliem and W. Löhr, Existence of mark functions in marked metric measure spaces, Electron. J. Probab. 20 (2015), no. 73.
  • [28] T. G. Kurtz, Martingale problems for conditional distributions of Markov processes, Electron. J. Probab. 3 (1998), no. 9, 29 pp.
  • [29] C. Labbé, From flows of $\Lambda $-Fleming-Viot processes to lookdown processes via flows of partitions, Electron. J. Probab. 19 (2014), no. 55.
  • [30] W. Löhr, Equivalence of Gromov-Prohorov- and Gromov’s $\underline \square _\lambda $-metric on the space of metric measure spaces, Electron. Commun. Probab. 18 (2013), no. 17.
  • [31] G. Miermont, Tessellations of random maps of arbitrary genus, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 725–781.
  • [32] M. Möhle, Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent, Stochastic Process. Appl. 120 (2010), no. 11, 2159–2173.
  • [33] M. Möhle and S. Sagitov, A classification of coalescent processes for haploid exchangeable population models, Ann. Probab. 29 (2001), no. 4, 1547–1562.
  • [34] P. Pfaffelhuber and A. Wakolbinger, The process of most recent common ancestors in an evolving coalescent, Stochastic Process. Appl. 116 (2006), no. 12, 1836–1859.
  • [35] P. Pfaffelhuber, A. Wakolbinger, and H. Weisshaupt, The tree length of an evolving coalescent, Probab. Theory Related Fields 151 (2011), no. 3–4, 529–557.
  • [36] J. Pitman, Coalescents with multiple collisions, Ann. Probab. 27 (1999), no. 4, 1870–1902.
  • [37] L. C. G. Rogers and J. W. Pitman, Markov functions, Ann. Probab. 9 (1981), no. 4, 573–582.
  • [38] L. C. G. Rogers and D. Williams, Diffusions, Markov processes, and martingales. Vol. 1, Cambridge University Press, 2000.
  • [39] S. Sagitov, The general coalescent with asynchronous mergers of ancestral lines, J. Appl. Probab. 36 (1999), no. 4, 1116–1125.
  • [40] J. Schweinsberg, Coalescents with simultaneous multiple collisions, Electron. J. Probab. 5 (2000), no. 4.
  • [41] A. Véber and A. Wakolbinger, The spatial Lambda-Fleming-Viot process: an event-based construction and a lookdown representation, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 2, 570–598.
  • [42] A. M. Vershik, Random and universal metric spaces, Dynamics and randomness II, Kluwer Acad. Publ., Dordrecht, vol. 10, 2004, pp. 199–228.