Electronic Journal of Probability

Affine processes with compact state space

Paul Krühner and Martin Larsson

Full-text: Open access


The behavior of affine processes, which are ubiquitous in a wide range of applications, depends crucially on the choice of state space. We study the case where the state space is compact, and prove in particular that (i) no diffusion is possible; (ii) jumps are possible and enforce a grid-like structure of the state space; (iii) jump components can feed into drift components, but not vice versa. Using our main structural theorem, we classify all bivariate affine processes with compact state space. Unlike the classical case, the characteristic function of an affine process with compact state space may vanish, even in very simple cases.

Article information

Electron. J. Probab., Volume 23 (2018), paper no. 29, 23 pp.

Received: 23 June 2017
Accepted: 12 March 2018
First available in Project Euclid: 30 March 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J25: Continuous-time Markov processes on general state spaces 60J27: Continuous-time Markov processes on discrete state spaces 60J75: Jump processes

affine processes compact state space Markov chains

Creative Commons Attribution 4.0 International License.


Krühner, Paul; Larsson, Martin. Affine processes with compact state space. Electron. J. Probab. 23 (2018), paper no. 29, 23 pp. doi:10.1214/18-EJP156. https://projecteuclid.org/euclid.ejp/1522375269

Export citation


  • [1] C. Carathéodory, über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95–115.
  • [2] C. Cuchiero, Affine and polynomial processes, Ph.D. thesis, ETH ZURICH, 2011.
  • [3] Christa Cuchiero, Damir Filipović, Eberhard Mayerhofer, and Josef Teichmann, Affine processes on positive semidefinite matrices, Ann. Appl. Probab. 21 (2011), no. 2, 397–463.
  • [4] Christa Cuchiero, Martin Keller-Ressel, Eberhard Mayerhofer, and Josef Teichmann, Affine processes on symmetric cones, J. Theoret. Probab. 29 (2016), no. 2, 359–422.
  • [5] D. Duffie, D. Filipović, and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab. 13 (2003), no. 3, 984–1053.
  • [6] Darrell Duffie, Jun Pan, and Kenneth Singleton, Transform analysis and asset pricing for affine jump-diffusions, Econometrica 68 (2000), no. 6, 1343–1376.
  • [7] Darrell Duffie and Kenneth J Singleton, Modeling term structures of defaultable bonds, Review of Financial studies 12 (1999), no. 4, 687–720.
  • [8] Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986, Characterization and convergence.
  • [9] Damir Filipović, Term-structure models, Springer Finance, Springer-Verlag, Berlin, 2009, A graduate course.
  • [10] Damir Filipović and Martin Larsson, Polynomial diffusions and applications in finance, Finance Stoch. 20 (2016), no. 4, 931–972.
  • [11] Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, Springer-Verlag, Berlin, 2003.
  • [12] Jan Kallsen and Paul Krühner, On a Heath-Jarrow-Morton approach for stock options, Finance Stoch. 19 (2015), no. 3, 583–615.
  • [13] Martin Keller-Ressel and Eberhard Mayerhofer, Exponential moments of affine processes, Ann. Appl. Probab. 25 (2015), no. 2, 714–752.
  • [14] Monika Piazzesi, Affine term structure models, Handbook of financial econometrics 1 (2010), 691–766.
  • [15] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970.
  • [16] Peter Spreij and Enno Veerman, Affine diffusions with non-canonical state space, Stoch. Anal. Appl. 30 (2012), no. 4, 605–641.