Electronic Journal of Probability

Point-shift foliation of a point process

Francois Baccelli and Mir-Omid Haji-Mirsadeghi

Full-text: Open access

Abstract

A point-shift $F$ maps each point of a point process $\Phi $ to some point of $\Phi $. For all translation invariant point-shifts $F$, the $F$-foliation of $\Phi $ is a partition of the support of $\Phi $ which is the discrete analogue of the stable manifold of $F$ on $\Phi $. It is first shown that foliations lead to a classification of the behavior of point-shifts on point processes. Both qualitative and quantitative properties of foliations are then established. It is shown that for all point-shifts $F$, there exists a point-shift $F_\bot $, the orbits of which are the $F$-foils of $\Phi $, and which is measure-preserving. The foils are not always stationary point processes. Nevertheless, they admit relative intensities with respect to one another.

Article information

Source
Electron. J. Probab., Volume 23 (2018), paper no. 19, 25 pp.

Dates
Received: 30 October 2016
Accepted: 4 November 2017
First available in Project Euclid: 23 February 2018

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1519354948

Digital Object Identifier
doi:10.1214/17-EJP123

Mathematical Reviews number (MathSciNet)
MR3771756

Zentralblatt MATH identifier
06868364

Subjects
Primary: 37C85: Dynamics of group actions other than Z and R, and foliations [See mainly 22Fxx, and also 57R30, 57Sxx] 60G10: Stationary processes 60G55: Point processes 60G57: Random measures

Keywords
point process stationarity Palm probability point-shift point-map allocation rule mass transport principle dynamical system stable manifold

Rights
Creative Commons Attribution 4.0 International License.

Citation

Baccelli, Francois; Haji-Mirsadeghi, Mir-Omid. Point-shift foliation of a point process. Electron. J. Probab. 23 (2018), paper no. 19, 25 pp. doi:10.1214/17-EJP123. https://projecteuclid.org/euclid.ejp/1519354948


Export citation

References

  • [1] D.V. Anosov, Foliations, Springer Verlag, 2001, in Encyclopedia of Mathematics.
  • [2] F. Baccelli, B. Blaszczyszyn, and M.-O. Haji-Mirsadeghi, Optimal paths on the space-time SINR random graph, Advances in Applied Probability 43 (2011), no. 1, 131–150.
  • [3] F. Baccelli and P. Brémaud, Elements of queueing theory, Springer Verlag, 2003.
  • [4] F. Baccelli and M.-O. Haji-Mirsadeghi, Point-map-probabilities of a point process and Mecke’s invariant measure equation, Ann. Probability 45 (2017), no. 3, 1723–1751.
  • [5] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes. Vol. II, second ed., Springer, 2008.
  • [6] P. A. Ferrari, C. Landim, and H. Thorisson, Poisson trees, succession lines and coalescing random walks, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 2, 141–152.
  • [7] S. Gangopadhyay, R. Roy, and A. Sarkar, Random oriented trees : a model of drainage networks, Annals of Applied Probability 14 (2004), 1242–1266.
  • [8] M. Heveling and G. Last, Characterization of Palm measures via bijective point-shifts, Ann. Probab. 33 (2005), no. 5, 1698–1715.
  • [9] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, 1995.
  • [10] D. Koenig, Theory of finite and infinite graphs, Birkhauser, 1990.
  • [11] G. Last and H. Thorisson, Invariant transports of stationary random measures and mass-stationarity, Ann. Probab. 37 (2009), no. 2, 790–813.
  • [12] J. Mecke, Invarianzeigenschaften allgemeiner Palmscher Maße, Math. Nachr. 65 (1975), 335–344.
  • [13] H. Thorisson, Coupling, stationarity, and regeneration, Springer-Verlag, 2000.