## Electronic Journal of Probability

### Pinning of a renewal on a quenched renewal

#### Abstract

We introduce the pinning model on a quenched renewal, which is an instance of a (strongly correlated) disordered pinning model. The potential takes value 1 at the renewal times of a quenched realization of a renewal process $\sigma$, and $0$ elsewhere, so nonzero potential values become sparse if the gaps in $\sigma$ have infinite mean. The “polymer” – of length $\sigma _N$ – is given by another renewal $\tau$, whose law is modified by the Boltzmann weight $\exp (\beta \sum _{n=1}^N \mathbf{1} _{\{\sigma _n\in \tau \}})$. Our assumption is that $\tau$ and $\sigma$ have gap distributions with power-law-decay exponents $1+\alpha$ and $1+\tilde \alpha$ respectively, with $\alpha \geq 0,\tilde \alpha >0$. There is a localization phase transition: above a critical value $\beta _c$ the free energy is positive, meaning that $\tau$ is pinned on the quenched renewal $\sigma$. We consider the question of relevance of the disorder, that is to know when $\beta _c$ differs from its annealed counterpart $\beta _c^{\mathrm{ann} }$. We show that $\beta _c=\beta _c^{\mathrm{ann} }$ whenever $\alpha +\tilde \alpha \geq 1$, and $\beta _c=0$ if and only if the renewal $\tau \cap \sigma$ is recurrent. On the other hand, we show $\beta _c>\beta _c^{\mathrm{ann} }$ when $\alpha +\frac 32\, \tilde \alpha <1$. We give evidence that this should in fact be true whenever $\alpha +\tilde \alpha <1$, providing examples for all such $\alpha ,\tilde \alpha$ of distributions of $\tau ,\sigma$ for which $\beta _c>\beta _c^{\mathrm{ann} }$. We additionally consider two natural variants of the model: one in which the polymer and disorder are constrained to have equal numbers of renewals ($\sigma _N=\tau _N$), and one in which the polymer length is $\tau _N$ rather than $\sigma _N$. In both cases we show the critical point is the same as in the original model, at least when $\alpha >0$.

#### Article information

Source
Electron. J. Probab., Volume 23 (2018), paper no. 6, 48 pp.

Dates
Accepted: 3 January 2018
First available in Project Euclid: 12 February 2018

https://projecteuclid.org/euclid.ejp/1518426053

Digital Object Identifier
doi:10.1214/18-EJP136

Mathematical Reviews number (MathSciNet)
MR3771743

Zentralblatt MATH identifier
1390.60341

#### Citation

Alexander, Kenneth S.; Berger, Quentin. Pinning of a renewal on a quenched renewal. Electron. J. Probab. 23 (2018), paper no. 6, 48 pp. doi:10.1214/18-EJP136. https://projecteuclid.org/euclid.ejp/1518426053

#### References

• [1] K. S. Alexander, The effect of disorder on polymer depinning transitions, Commun. Math. Phys. 279 (2008), 117–146.
• [2] K. S. Alexander and Q. Berger, Local asymptotics for the first intersection of two independent renewals, Electron. J. Probab. 21 (2016), no. 68, 1–20.
• [3] K. S. Alexander and Q. Berger, Local limit theorems and renewal theory with no moments, Electron. J. Probab. 21 (2016), no. 66, 1–18.
• [4] K. S. Alexander and N. Zygouras, Quenched and annealed critical points in polymer pinning models, Commun. Math. Phys. 291 (2009), 659–689.
• [5] Q. Berger and H. Lacoin, Sharp critical behavior for random pinning model with correlated environment, Stoch. Proc. Appl. 122 (2012), no. 4, 1397–1436.
• [6] Q. Berger and H. Lacoin, Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift, J. Inst. Math. Jussieu Firstview (2016), 1–42.
• [7] Q. Berger and F. L. Toninelli, On the critical point of the random walk pinning model in dimension $d=3$, Elec. Jour. Probab. 15 (2010), 654–683.
• [8] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variations, Cambridge University Press, Cambridge, 1987.
• [9] M. Birkner, A. Greven, and F. den Hollander, Quenched large deviation principle for words in a letter sequence, Probab. Theory Relat. Fields 148 (2010), 403–456.
• [10] M. Birkner, A. Greven, and F. den Hollander, Collision local time of transient random walks and intermediate phases in interacting stochastic systems, Electr. Jour. Probab. 16 (2011), 552–586.
• [11] M. Birkner and R. Sun, Annealed vs quenched critical points for a random walk pinning model, Ann. Inst. H. Poincaré Probab. Stat. 46 (2010), 414–441.
• [12] M. Birkner and R. Sun, Disorder relevance for the random walk pinning model in dimension $3$, Ann. Inst. H. Poincaré Probab. Stat. 47 (2011), 259–293.
• [13] F. Caravenna, R. Sun, and N. Zygouras, Polynomial chaos and scaling limits of disordered systems, J. Eur. Math. Soc. 19 (2017), 1–65.
• [14] D. Cheliotis and F. den Hollander, Variational characterization of the critical curve for pinning of random polymers, Ann. Probab. 41 (2013), 1767–1805.
• [15] F. den Hollander, Random polymers, Lecture notes in Mathematics - École d’Été de Probabilités de Saint-Flour XXXVII-2007, Springer, 2009.
• [16] B. Derrida, G. Giacomin, H. Lacoin, and F. L. Toninelli, Fractional moment bounds and disorder relevance for pinning models, Commun. Math. Phys. 287 (2009), 867–887.
• [17] R. A. Doney, One-sided local large deviation and renewal theorems in the case of infinite mean, Probab. Theory Relat. Fields 107 (1997), 451–465.
• [18] K. B. Erickson, Strong renewal theorems with infinite mean, Transaction of the American Mathematical Society 151 (1970).
• [19] G. Giacomin, Random polymer models, Imperial College Press, 2007.
• [20] G. Giacomin, Disorder and critical phenomena through basic probability models, lecture notes in mathematics ed., Lecture notes in Mathematics - École d’Été de Probabilités de Saint-Flour XL-2010, Springer, 2011.
• [21] G. Giacomin, H. Lacoin, and F. L. Toninelli, Marginal relevance of disorder for pinning models, Commun. Pure Appl. Math. 63 (2010), 233–265.
• [22] G. Giacomin, H. Lacoin, and F. L. Toninelli, Disorder relevance at marginality and critical point shift, Ann. Inst. H. Poincaré 47 (2011), 148–175.
• [23] B. V. Gnedenko and A. N. Kolmogorov, Limit theorems for sums of independent random variables, Addison-Wesley, Cambridge, 1954.
• [24] A. B. Harris, Effect of random defects on the critical behaviour of Ising models, J. Phys. C 7 (1974), 1671–1692.
• [25] E. Janvresse, T. de la Rue, and Y. Velenik, Pinning by a sparse potential, Stoch. Proc. Appl. 115 (2005), no. 8.
• [26] J. F. C. Kingman, Subadditive ergodic theory, Ann. Probab. 1 (1973), 882–909.
• [27] H. Lacoin, The martingale approach to disorder irrelevance for pinning models, Elec. Comm. Probab. 15 (2010), 418–427.
• [28] S. V. Nagaev, The renewal theorem in the absence of power moments, Theory Probab. Appl. 56 (2012), no. 1, 166–175.
• [29] D. Poland and H. A. Schegara, Occurence of a phase transition in nucleic acid models, J. Chem. Phys 45 (1966), 1464–1469.
• [30] F. L. Toninelli, Critical properties and finite-size estimates for the depinning transition of directed random polymers, J. Stat. Phys. 126 (2007), 1025–1044.
• [31] F. L. Toninelli, Disordered pinning models and copolymers: beyond annealed bounds, Ann. Appl. Probab. 18 (2008), 1569–1587.